Handwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated analysis method for the dynamic electronic representation of handwritten signature authentication was researched. The developed algorithms are based on the dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the designed electronic pen described in the paper. The triplet loss method was used to train a neural network suitable for writer-invariant signature verification. For each signature, the same neural network calculates a fixed-length latent space representation. The hand-corrected dataset containing 10,622 signatures was used in order to train and evaluate the proposed neural network. After learning, the network was tested and evaluated based on a comparison with the results found in the literature. The use of the triplet loss algorithm to teach the neural network to generate embeddings has proven to give good results in aggregating similar signatures and separating them from signatures representing different people.
An automatic surveillance system capable of detecting, classifying and localizing acoustic events in a bank operating room is presented. Algorithms for detection and classification of abnormal acoustic events, such as screams or gunshots are introduced. Two types of detectors are employed to detect impulsive sounds and vocal activity. A Support Vector Machine (SVM) classifier is used to discern between the different classes of acoustic events. The methods for calculating the direction of coming sound employing an acoustic vector sensor are presented. The localization is achieved by calculating the DOA (Direction of Arrival) histogram. The evaluation of the system based on experiments conducted in a real bank operating room is presented. The results of sound event detection, classification and localization are provided and discussed. The practical usability of the engineered methods is underlined by presenting the results of analyzing a staged robbery situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.