Topological photonics provides exceptional opportunities to control electromagnetic waves with a great potential for applications. Most of the proposed photonic systems support topological edge states with fixed parameters, thus hindering their practical applications. The study of nonlinear and tunable effects in topological systems enlarges applications of topological phenomena. Here, we propose an approach for the manipulation of photonic topological edge states based on temperature tuning. We design and demonstrate experimentally topological zigzag arrays composed of high-index resonators. The resonators are fabricated from ferroelectrics that brings an opportunity to dynamically change their permittivity by heating. We study the emergence of topological edge states in zigzag arrays of ferroelectric particles supporting the Mie resonances and demonstrate the topological transition induced by heating individual resonators in the array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.