Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer-assisted diagnostic system for early DR detection using the OCT retinal images.
A new framework for early diagnosis of prostate cancer using Diffusion-Weighted Imaging (DWI) is proposed. The proposed diagnostic approach consists of the following four steps to detect locations that are suspicious for prostate cancer: 1) In the first step, we isolate the prostate from the surrounding anatomical structures based on a Maximum A Posteriori (MAP) estimate of a new log-likelihood function that accounts for the shape priori, the spatial interaction, and the current appearance of prostate tissues and its background (surrounding anatomical structures); 2) In order to take into account any local deformation between the segmented prostates at different b-values that could occur during the scanning process due to local motion, a non-rigid registration algorithm is employed; 3) A KNN-based classifier is used to classify the prostate into benign or malignant based on three appearance features extracted from registered images; and 4) The tumor boundaries are determined using a level set deformable model controlled by the diffusion information and the spatial interactions between the prostate voxels. Preliminary experiments on 28 patients (17 malignant and 11 benign) resulted in 100% correct classification, showing that the proposed method is a promising supplement to current technologies (biopsy-based diagnostic systems) for the early diagnosis of prostate cancer.
Algorithms incorporating 3D information have proven to be superior to purely 2D approaches in many areas of computer vision including face biometrics and recognition. Still, the range of methods for feature extraction from 3D surfaces is limited. Very popular in 2D image analysis, active contours have been generalized to curved surfaces only recently. Current implementations require a global surface parametrisation. We show that a balloon force cannot be included properly in existing methods, making them unsuitable for applications with noisy data. To overcome this drawback we propose a new algorithm for evolving geodesic active contours on implicit surfaces. We also introduce a new narrowband scheme which results in linear computational complexity. The performance of our model is illustrated on various real and synthetic 3D surfaces.
Abstract. Automatic detection of lung nodules is an important problem in computer analysis of chest radiographs. In this paper we propose a novel algorithm for isolating lung nodules from spiral CT scans. The proposed algorithm is based on using four different types of deformable templates describing typical geometry and gray level distribution of lung nodules. These four types are (i) solid spherical model of large-size calcified and non-calcified nodules appearing in several successive slices; (ii) hollow spherical model of large lung cavity nodules; (iii) circular model of small nodules appearing in only a single slice; and (iv) semicircular model of lung wall nodules. Each template has a specific gray level pattern which is analytically estimated in order to fit the available empirical data. The detection combines the normalized cross-correlation template matching by genetic optimization and Bayesian post-classification. This approach allows for isolating abnormalities which spread over several adjacent CT slices. Experiments with 200 patients' CT scans show that the developed techniques detect lung nodules more accurately than other known algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.