Objective: To determine key parameters for calculating dynamic effect of magnetic-levitation highspeed transport on bridge structures, carry out a dynamic analysis, and check the obtained results against experimental data and compare them with similar results on high-speed railways. Methods: In the course of the study, the method of direct integration of the dynamic problem of mo ving a mobile load along the bridge superstructure was used. Results: Computational model of a magnetic-levitation high-speed train was developed. A set of dynamic calculations was performed. Data on the magnitude of dynamic reaction of the bridge superstructure during the movement of a magnetic-levitation train were obtained. Values of the dynamic coefficient for mobile load in the speed range of up to 1000 km/h were calculated. Practical importance: Results obtained in the course of the study and the comparison made with similar data for high-speed rail transport have confirmed a significant decrease in the dynamic response of bridge superstructures when magnetic-levitation technologies are deployed. The calculation model thus developed opens up broad prospects for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.