The computer numerical control (CNC) machine has recently taken a fundamental role in the manufacturing industry, which is essential for the economic development of many countries. Current high quality production standards, along with the requirement for maximum economic benefits, demand the use of tool condition monitoring (TCM) systems able to monitor and diagnose cutting tool wear. Current TCM methodologies mainly rely on vibration signals, cutting force signals, and acoustic emission (AE) signals, which have the common drawback of requiring the installation of sensors near the working area, a factor that limits their application in practical terms. Moreover, as machining processes require the optimal tuning of cutting parameters, novel methodologies must be able to perform the diagnosis under a variety of cutting parameters. This paper proposes a novel non-invasive method capable of automatically diagnosing cutting tool wear in CNC machines under the variation of cutting speed and feed rate cutting parameters. The proposal relies on the sensor information fusion of spindle-motor stray flux and current signals by means of statistical and non-statistical time-domain parameters, which are then reduced by means of a linear discriminant analysis (LDA); a feed-forward neural network is then used to automatically classify the level of wear on the cutting tool. The proposal is validated with a Fanuc Oi mate Computer Numeric Control (CNC) turning machine for three different cutting tool wear levels and different cutting speed and feed rate values.
In the manufacturing industry, computer numerical control (CNC) machine tools are of great importance since the processes in which they are used allow the creation of elements used in multiple sectors. Likewise, the condition of the cutting tools used is paramount due to the effect they have on the process and the quality of the supplies produced. For decades, methodologies have been developed that employ various signals and sensors for wear detection, prediction and monitoring; however, this field is constantly evolving, with new technologies and methods that have allowed the development of non-invasive, efficient and robust systems. This paper proposes the use of magnetic stray flux and motor current signals from a CNC lathe and the analysis of images of machined parts for wear detection using online and offline information under the variation in cutting speed and tool feed rate. The information obtained is processed through statistical and non-statistical indicators and dimensionally reduced by linear discriminant analysis (LDA) and a feed-forward neural network (FFNN) for wear classification. The results obtained show a good performance in wear detection using the individual signals, achieving efficiencies of 77.5%, 73% and 89.78% for the analysis of images, current and stray flux signals, respectively, under the variation in cutting speed, and 76.34%, 73% and 63.12% for the analysis of images, current and stray flux signals, respectively, under the variation of feed rate. Significant improvements were observed when the signals are fused, increasing the efficiency up to 95% for the cutting speed variations and 82.84% for the feed rate variations, achieving a system that allows detecting the wear present in the tools according to the needs of the process (online/offline) under different machining parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.