HighlightsMachine learning can incorporate a variety of data from low-cost sensors and estimate actual ET by comparison with short-term, higher-cost measurements.On-farm weather monitoring can be leveraged to estimate site-specific crop-water requirements.Expanding spatial coverage of weather and actual ET through on-farm monitoring will facilitate localization and leverage publicly available weather data to guide irrigation decisions and improve irrigation water management.Abstract. One of the basic challenges to adopting science-based irrigation scheduling is providing reliable, site-specific estimates of actual crop water demand. While agro-meteorology networks cover most agricultural production areas in the U.S., widely spaced stations represent regionally specific, rather than site-specific, conditions. A variety of low to moderate cost commercial weather stations are available but do not provide directly useful information, such as actual evapotranspiration (ETa), or the ability to incorporate additional sensors. We demonstrate that machine learning methods can provide real-time, site-specific information about ETa and crop water demand using on-farm sensors and public weather information. Two years of field experiments were conducted at four irrigated field sites with crops including snap beans, alfalfa, and pasture. On-farm data were compared to publicly available data originating at nearby agro-meteorology network stations. The machine learning procedure can robustly estimate ETa using data from a few basic sensors, but the resulting estimate is sensitive to the range of conditions that are used as training data. The results demonstrate that machine learning can be used with affordable sensors and publicly available data to improve local estimates of crop water demand when high-quality measurements can be co-located for short periods of time. Supplementary sensors can also be integrated into a tailored monitoring plan to estimate crop stress and other operational considerations. Keywords: Agro-meteorology, Irrigation requirement, Machine learning, Site-specific Irrigation.
Daytime atmospheric boundary layer (ABL) dynamics—including potential temperature budgets, water vapour budgets, and entrainment rates—are presented from in situ flight data taken on six afternoons near Fresno in the San Joaquin Valley (SJV) of California during July/August 2016. The flights took place as a part of the California Baseline Ozone Transport Study aimed at investigating transport pathways of air entering the Central Valley from offshore and mixing down to the surface. Midday entrainment velocity estimates ranged from 0.8 to 5.4 cm s−1 and were derived from a combination of continuously determined ABL heights during each flight and model-derived subsidence rates, which averaged -2.0 cm s−1 in the flight region. A strong correlation was found between entrainment velocity (normalized by the convective velocity scale) and an inverse bulk ABL Richardson number, suggesting that wind shear at the ABL top plays a significant role in driving entrainment. Similarly, we found a strong correlation between the entrainment efficiency (the ratio of entrainment to surface heat fluxes with an average of 0.23 ± 0.15) and the wind speed at the ABL top. We explore the synoptic conditions that generate higher winds near the ABL top and propose that warm anomalies in the southern Sierra Nevada mountains promote increased entrainment. Additionally, a method is outlined to estimate turbulence kinetic energy, convective velocity scale (w*), and the surface sensible heat flux in the ABL from a slow, airborne wind measurement system using mixed-layer similarity theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.