An uncertain graph G = (V, E, p : E → (0, 1]) can be viewed as a probability space whose outcomes (referred to as possible worlds) are subgraphs of G where any edge e ∈ E occurs with probability p(e), independently of the other edges. These graphs naturally arise in many application domains where data management systems are required to cope with uncertainty in interrelated data, such as computational biology, social network analysis, network reliability, and privacy enforcement, among the others. For this reason, it is important to devise fundamental querying and mining primitives for uncertain graphs. This paper contributes to this endeavor with the development of novel strategies for clustering uncertain graphs. Specifically, given an uncertain graph G and an integer k, we aim at partitioning its nodes into k clusters, each featuring a distinguished center node, so to maximize the minimum/average connection probability of any node to its cluster's center, in a random possible world. We assess the NP-hardness of maximizing the minimum connection probability, even in the presence of an oracle for the connection probabilities, and develop efficient approximation algorithms for both problems and some useful variants. Unlike previous works in the literature, our algorithms feature provable approximation guarantees and are capable to keep the granularity of the returned clustering under control. Our theoretical findings are complemented with several experiments that compare our algorithms against some relevant competitors, with respect to both running-time and quality of the returned clusterings.
Motivated by the growing interest in mobile systems, we study the dynamics of information dissemination between agents moving independently on a plane. Formally, we consider k mobile agents performing independent random walks on an n-node grid. At time 0, each agent is located at a random node of the grid and one agent has a rumor. The spread of the rumor is governed by a dynamic communication graph process {Gt(r) | t ≥ 0}, where two agents are connected by an edge in Gt(r) iff their distance at time t is within their transmission radius r. Modeling the physical reality that the speed of radio transmission is much faster than the motion of the agents, we assume that the rumor can travel throughout a connected component of Gt before the graph is altered by the motion. We study the broadcast time TB of the system, which is the time it takes for all agents to know the rumor. We focus on the sparse case (below the percolation point rc ≈ p n/k) where, with high probability, no connected component in Gt has more than a logarithmic number of agents and the broadcast time is dominated by the time it takes for many independent random walks to meet one other. Quite surprisingly, we show that for a system below the percolation point, the broadcast time does not depend on the transmission radius.for any 0 ≤ r < rc, even when the transmission range is significantly larger than the mobility range in one step, giving a tight characterization up to logarithmic factors. Our result complements a recent result of Peres et al. (SODA 2011) who showed that above the percolation point the broadcast time is polylogarithmic in k.
This work explores fundamental modeling and algorithmic issues arising in the well-established MapReduce framework. First, we formally specify a computational model for MapReduce which captures the functional flavor of the paradigm by allowing for a flexible use of parallelism. Indeed, the model diverges from a traditional processor-centric view by featuring parameters which embody only global and local memory constraints, thus favoring a more data-centric view. Second, we apply the model to the fundamental computation task of matrix multiplication presenting upper and lower bounds for both dense and sparse matrix multiplication, which highlight interesting tradeoffs between space and round complexity. Finally, building on the matrix multiplication results, we derive further space-round tradeoffs on matrix inversion and matching
Center-based clustering is a fundamental primitive for data analysis and becomes very challenging for large datasets. In this paper, we focus on the popular k-center variant which, given a set S of points from some metric space and a parameter k < |S|, requires to identify a subset of k centers in S minimizing the maximum distance of any point of S from its closest center. A more general formulation, introduced to deal with noisy datasets, features a further parameter z and allows up to z points of S (outliers) to be disregarded when computing the maximum distance from the centers. We present coreset-based 2-round MapReduce algorithms for the above two formulations of the problem, and a 1-pass Streaming algorithm for the case with outliers. For any fixed ε > 0, the algorithms yield solutions whose approximation ratios are a mere additive term ε away from those achievable by the best known polynomial-time sequential algorithms, a result that substantially improves upon the state of the art. Our algorithms are rather simple and adapt to the intrinsic complexity of the dataset, captured by the doubling dimension D of the metric space. Specifically, our analysis shows that the algorithms become very space-efficient for the important case of small (constant) D. These theoretical results are complemented with a set of experiments on real-world and synthetic datasets of up to over a billion points, which show that our algorithms yield better quality solutions over the state of the art while featuring excellent scalability, and that they also lend themselves to sequential implementations much faster than existing ones.
Given a dataset of points in a metric space and an integer k, a diversity maximization problem requires determining a subset of k points maximizing some diversity objective measure, e.g., the minimum or the average distance between two points in the subset. Diversity maximization is computationally hard, hence only approximate solutions can be hoped for. Although its applications are mainly in massive data analysis, most of the past research on diversity maximization focused on the sequential setting. In this work we present space and pass/round-efficient diversity maximization algorithms for the Streaming and MapReduce models and analyze their approximation guarantees for the relevant class of metric spaces of bounded doubling dimension. Like other approaches in the literature, our algorithms rely on the determination of high-quality core-sets, i.e., (much) smaller subsets of the input which contain good approximations to the optimal solution for the whole input. For a variety of diversity objective functions, our algorithms attain an (α + ε)-approximation ratio, for any constant ε > 0, where α is the best approximation ratio achieved by a polynomial-time, linear-space sequential algorithm for the same diversity objective. This improves substantially over the approximation ratios attainable in Streaming and MapReduce by state-of-the-art algorithms for general metric spaces. We provide extensive experimental evidence of the effectiveness of our algorithms on both real world and synthetic datasets, scaling up to over a billion points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.