Nylon 11 and Nylon 12 have been studied for many years for the purpose of fabricating microporous films. Unfortunately, these polymers have somewhat unique properties that prevent the films from exhibiting porous surfaces when their solutions undergo thermally induced phase separation by quenching in water. Without surface pores, these films have limited utility as water purification membranes. In this work, application of high temperature diluent coatings to the surface prior to quenching is shown to enable the formation of surface porosity in Nylon 11 and Nylon 12 films. Furthermore, the pore sizes achieved are suitable for ultrafiltration applications. Following successful lab-scale coating experiments, the effects of coating thickness, temperature, and solvent type on surface morphology are demonstrated over five film extrusion trials.
A thorough understanding of the rheological properties of real-world, formulated polymer melts and solutions is important to fabricate articles via typical melt processing techniques. Polyamides have been studied extensively in the area of water purification applications. In this work, the viscosity of these homogeneous polyamide 11 and polyamide 12 solutions in specific polyols was measured in the single phase region as a function of shear rate and temperature via capillary rheometry. In addition, the viscosity of the same polyamide solutions containing various levels of dispersed, nanoscale calcium carbonate particles was characterized in order to understand the rheology of the filled systems. Viscosity-reduced shear rate master curves were constructed by applying the principle of time-temperature superposition, and the activation energies were measured for the polyamide-polyol solutions. The observed increase in viscosity caused by the addition of nanofiller could not be explained by simply applying a vertical shift to the master curve, and a density exponent was required to account for the stiffening mechanism. Also, the dependence of the relative viscosity on the filler loading was shown to be consistent with the hypothesis that the filler particles were organized in the form of small fractal aggregates. The filled polyamide 11 systems exhibited higher relative viscosities than the filled polyamide 12 systems, indicating a higher level of particle aggregation and larger mean cluster size for the filled polyamide 11 systems.Additional Supporting Information may be found in the online version of this article.™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.