We introduce an acquisition method, "block regional interpolation scheme for k-space" (BRISK), to reduce the acquisition time for cardiac imaging. The method exploits the high degree of correlation that exists between time-resolved cardiac images. For representative k-space data sets, Fourier analysis was applied along the cardiac phase dimension to reveal that different regions of k-space can be effectively sampled at different rates. A reduced sampling strategy was implemented, and unsampled points were generated by Fourier interpolation. Time savings of up to 75% are quite feasible and 25% BRISK scans compare well with 100% scans. Simulations and acquisitions using a normal volunteer and patients are presented.
A technique is demonstrated for the acquisition and processing of multislice, first-pass contrast-enhanced perfusion images in the myocardium. The acquisition is a modification of "keyhole" imaging in which time series images are acquired by sampling a limited segment of k-space, corresponding to the low spatial frequencies. In the modification demonstrated here, keyhole samples are divided into two groups that are sampled on alternate cardiac cycles. The alternate "missing" k-space portions are synthesized by Fourier interpolation. Visualization of contrast agent accumulation by image subtraction is demonstrated. A motion artifact reduction process using time domain Fourier filtering is used to reduce artifacts from respiration. Studies were performed on 46 patients at 1.5 T using gadoteridol (0.05-0.1 mmol/kg) injected into the right antecubital vein in conjunction with radionuclide imaging. Fully concordant studies were noted in 27 of these patients. Remaining studies were either partially or completely discordant for reasons relating to the differing natures of radionuclide versus MR contrast agent characteristics.
In patients with a LVEF > 40% after acute MI, ramipril decreased LV mass, and blood pressure and LV function were unchanged after 3 months of therapy. Whether the decrease in mass represents a sustained effect that is associated with a decrease in morbid events requires further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.