Billions of Linked Data triples exist in thousands of RDF knowledge graphs on the Web, but few of those graphs can be queried live from Web applications. Only a limited number of knowledge graphs are available in a queryable interface, and existing interfaces can be expensive to host at high availability. To mitigate this shortage of live queryable Linked Data, we designed a low-cost Triple Pattern Fragments interface for servers, and a client-side algorithm that evaluates SPARQL queries against this interface. This article describes the Linked Data Fragments framework to analyze Web interfaces to Linked Data and uses this framework as a basis to define Triple Pattern Fragments. We describe client-side querying for single knowledge graphs and federations thereof. Our evaluation verifies that this technique reduces server load and increases caching effectiveness, which leads to lower costs to maintain high server availability. These benefits come at the expense of increased bandwidth and slower, but more stable query execution times. These results substantiate the claim that lightweight interfaces can lower the cost for knowledge publishers compared to more expressive endpoints, while enabling applications to query the publishers' data with the necessary reliability.
As the Web of Data is growing at an ever increasing speed, the lack of reliable query solutions for live public data becomes apparent. sparql implementations have matured and deliver impressive performance for public sparql endpoints, yet poor availability-especially under high loads-prevents their use in real-world applications. We propose to tackle this availability problem by defining triple pattern fragments, a specific kind of Linked Data Fragments that enable low-cost publication of queryable data by moving intelligence from the server to the client. This paper formalizes the Linked Data Fragments concept, introduces a client-side sparql query processing algorithm that uses a dynamic iterator pipeline, and verifies servers' availability under load. The results indicate that, at the cost of lower performance, query techniques with triple pattern fragments lead to high availability, thereby allowing for reliable applications on top of public, queryable Linked Data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.