Proteins disabled in Fanconi anemia (FA) are necessary for the maintenance of genome stability during cell proliferation. Upon replication stress signaling by ATR, the FA core complex monoubiquitinates FANCD2 and FANCI in order to activate DNA repair. Here, we identified FANCD2 and FANCI in a proteomic screen of replisome-associated factors bound to nascent DNA in response to replication arrest. We found that FANCD2 can interact directly with minichromosome maintenance (MCM) proteins. ATR signaling promoted the transient association of endogenous FANCD2 with the MCM2-MCM7 replicative helicase independently of FANCD2 monoubiquitination. FANCD2 was necessary for human primary cells to restrain DNA synthesis in the presence of a reduced pool of nucleotides and prevented the accumulation of single-stranded DNA, the induction of p21, and the entry of cells into senescence. These data reveal that FANCD2 is an effector of ATR signaling implicated in a general replisome surveillance mechanism that is necessary for sustaining cell proliferation and attenuating carcinogenesis.
In the presence of sustained DNA damage occurring in S-phase or G2, normal cells arrest before mitosis and eventually become senescent. The checkpoint kinases Chk1/ Chk2 and the CDK inhibitor p21 are known to have important complementary roles in this process, in G2 arrest and cell cycle exit, respectively. However, additional checkpoint roles have been reported for these regulators and it is not clear to what extent their functions are redundant.Here we compared the respective roles of Chk1, Chk2 and p21 in DNA damage-induced G2 arrest in normal human fibroblasts, normal epithelial cells and frequently used p53 proficient cancer cells. We show that in normal cells, Chk1, but not Chk2, is involved in G2 arrest whereas neither are essential. In contrast, p21 is required. However, Chk1, but not Chk2, becomes necessary for arrest in U2OS osteosarcoma cells. We find that their ATM/p53/p21 response in G2 phase is defective, like in other cancer cells with wild-type p53, and conclude that cross-talk between the Chk1 and p21 pathways allows them to switch dependency for G2 arrest onto Chk1. Using the specific ATM inhibitor KU-55933 we confirm the essential role of ATM in the induction of p21 for G2 arrest of normal cells. Efficient p21 induction is required for nuclear sequestration of inactive cyclin B1-Cdk1 complexes preceding irreversible cell cycle exit in G2. Our results demonstrate that p21 is able to fulfill the Chk1 functions in G2 arrest under continuous genotoxic stress, which has important implications for cancer chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.