Recent advances enabling the cloning of human immunoglobulin G genes have proven effective for discovering monoclonal antibodies with therapeutic potential. However, these antibody-discovery methods are often arduous and identify only a few candidates from numerous antibody-secreting plasma cells or plasmablasts. We describe an in vivo enrichment technique that identifies broadly neutralizing human antibodies with high frequency. For this technique, human peripheral blood mononuclear cells from vaccinated donors are activated and enriched in an antigen-specific manner for the production of numerous antigen-specific plasmablasts. Using this technology, we identified four broadly neutralizing influenza A antibodies by screening only 840 human antibodies. Two of these antibodies neutralize every influenza A human isolate tested and perform better than the current anti-influenza A therapeutic, oseltamivir, in treating severe influenza infection in mice and ferrets. Furthermore, these antibodies elicit robust in vivo synergism when combined with oseltamivir, thus highlighting treatment strategies that could benefit influenza-infected patients.
Mammalian cell lines have been engineered to produce a secreted form of the AIDS retrovirus envelope glycoprotein. The recombinant protein has been isolated from growth-conditioned culture media and used to immunize animals. Antibodies directed against the recombinant molecule were found to react with the envelope glycoprotein produced in virus-infected cells. Furthermore, these antibodies were able to directly inactivate the AIDS retrovirus in a neutralization assay in vitro. The expression system reported here should provide sufficient quantities of the AIDS retrovirus envelope protein for biological and vaccination studies.
SignificanceThe outer membrane of Gram-negative bacteria presents a formidable barrier to the discovery of new antibiotics needed to combat infections by multidrug-resistant bacteria. Targeting essential proteins or processes directly exposed to the environment could bypass this obstacle. Here, we describe a monoclonal antibody that selectively and potently antagonizes BamA, which folds and inserts integral outer membrane β-barrel proteins, by binding to a surface-exposed BamA epitope and, as a result, inhibits bacterial cell growth. Mechanisms of resistance to the antibody reveal that membrane fluidity affects BamA activity. This antibody validates the potential therapeutic strategy of targeting essential, exposed functions and provides a powerful tool for dissecting the fundamental process of folding integral membrane β-barrel proteins in vivo.
Cluster of differentiation 20 (CD20) is a B cell membrane protein that is targeted by monoclonal antibodies for the treatment of malignancies and autoimmune disorders but whose structure and function are unknown. Rituximab (RTX) has been in clinical use for two decades, but how it activates complement to kill B cells remains poorly understood. We obtained a structure of CD20 in complex with RTX, revealing CD20 as a compact double-barrel dimer bound by two RTX antigen-binding fragments (Fabs), each of which engages a composite epitope and an extensive homotypic Fab:Fab interface. Our data suggest that RTX cross-links CD20 into circular assemblies and lead to a structural model for complement recruitment. Our results further highlight the potential relevance of homotypic Fab:Fab interactions in targeting oligomeric cell-surface markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.