[1] A three-dimensional primitive equation numerical ocean model was applied to Lake Michigan to simulate hydrodynamic conditions during the March 1998 sediment resuspension event in southern Lake Michigan caused by a storm with winds up to 20 m/s. The hydrodynamic model is driven with surface winds derived from observed meteorological conditions at 18 land stations and a meteorological buoy and also with surface winds calculated using a mesoscale meteorological model. Current observations from 11 subsurface moorings showed that the model driven with observed winds was able to qualitatively simulate wind-driven currents but underestimated current speeds during the most significant wind event. In addition, a pronounced offshore flow in the area of observations was also underestimated. Hydrodynamic model results using the meteorological model winds as the forcing function showed significant improvement over model results which were based on observed winds proving the importance of mesoscale winds for current modeling in large lakes.
[1] As part of the Episodic Events Great Lakes Experiment, we sampled total suspended matter (TSM), light climate, nutrients, and plankton along cross-margin transects in southern Lake Michigan during February, March, and April 1998-2000 to capture conditions before, during, and after the occurrence of storm-driven recurrent coastal sediment plumes to define the anatomy of the resuspension events and get insights into their interactions with nutrients and plankton. Variability in timing and strength of winter storms among years led to different timing, intensity, and extent of plumes among years. TSM concentrations in the core of plumes varied between 15 and 30 mg L À1 , and photic depth was reduced to $1 to 2 m, thus potentially seriously limiting phytoplankton growth in plume areas. Total P concentration was highly correlated with TSM and river influence. Chlorophyll concentrations were lower in plume regions than in adjacent areas, in contrast to the relatively constant chlorophyll concentration across the plume predicted by a coupled hydrodynamic and nutrient-phytoplankton-zooplankton model. Contrary to expectation, protozoan microzooplankton (MZ) biomass was not more abundant in the plume than adjacent waters, but was highest in nearshore areas receiving river inflow. Storms affected horizontal distribution of zooplankton. Because of the lower concentrations of phytoplankton in the plume, the plume over the short term had a negative impact on zooplankton during this food-limiting season. Our results combined with those of other EEGLE studies lead us to conclude that storms and storm-driven plumes had a negative effect on the planktonic food web. Citation: Vanderploeg, H. A., et al. (2007), Anatomy of the recurrent coastal sediment plume in Lake Michigan and its impacts on light climate, nutrients, and plankton,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.