Fusarium head blight, caused by Fusarium graminearum, is a devastating disease of wheat. We developed near-isogenic lines (NILs) differing in the two strongest known F. graminearum resistance quantitative trait loci (QTLs), Qfhs.ndsu-3BS (also known as resistance gene Fhb1) and Qfhs.ifa-5A, which are located on the short arm of chromosome 3B and on chromosome 5A, respectively. These NILs showing different levels of resistance were used to identify transcripts that are changed significantly in a QTL-specific manner in response to the pathogen and between mock-inoculated samples. After inoculation with F. graminearum spores, 16 transcripts showed a significantly different response for Fhb1 and 352 for Qfhs.ifa-5A. Notably, we identified a lipid transfer protein which is constitutively at least 50-fold more abundant in plants carrying the resistant allele of Qfhs.ifa-5A. In addition to this candidate gene associated with Qfhs.ifa-5A, we identified a uridine diphosphate (UDP)-glycosyltransferase gene, designated TaUGT12887, exhibiting a positive difference in response to the pathogen in lines harbouring both QTLs relative to lines carrying only the Qfhs.ifa-5A resistance allele, suggesting Fhb1 dependence of this transcript. Yet, this dependence was observed only in the NIL with already higher basal resistance. The complete cDNA of TaUGT12887 was reconstituted from available wheat genomic sequences, and a synthetic recoded gene was expressed in a toxin-sensitive strain of Saccharomyces cerevisiae. This gene conferred deoxynivalenol resistance, albeit much weaker than that observed with the previously characterized barley HvUGT13248.
Key messageFine mapping and sequencing revealed 28 genes in the non-recombining haplotype containingFhb1. Of these, only a GDSL lipase gene shows a pathogen-dependent expression pattern.AbstractFhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-016-2727-x) contains supplementary material, which is available to authorized users.
BackgroundFusarium head blight (FHB) caused by Fusarium graminearum Schwabe is one of the most prevalent diseases of wheat (Triticum aestivum L.) and other small grain cereals. Resistance against the fungus is quantitative and more than 100 quantitative trait loci (QTL) have been described. Two well-validated and highly reproducible QTL, Fhb1 and Qfhs.ifa-5A have been widely investigated, but to date the underlying genes have not been identified.ResultsWe have investigated a gene co-expression network activated in response to F. graminearum using RNA-seq data from near-isogenic lines, harboring either the resistant or the susceptible allele for Fhb1 and Qfhs.ifa-5A. The network identified pathogen-responsive modules, which were enriched for differentially expressed genes between genotypes or different time points after inoculation with the pathogen. Central gene analysis identified transcripts associated with either QTL within the network. Moreover, we present a detailed gene expression analysis of four gene families (glucanases, NBS-LRR, WRKY transcription factors and UDP-glycosyltransferases), which take prominent roles in the pathogen response.ConclusionsA combination of a network-driven approach and differential gene expression analysis identified genes and pathways associated with Fhb1 and Qfhs.ifa-5A. We find G-protein coupled receptor kinases and biosynthesis genes for jasmonate and ethylene earlier induced for Fhb1. Similarly, we find genes involved in the biosynthesis and metabolism of riboflavin more abundant for Qfhs.ifa-5A.
Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response.
Dysregulation of receptor tyrosine kinase-induced pathways is a critical step driving the oncogenic potential of brain cancer. In this study, we investigated the role of two members of the Sprouty (Spry) family in brain cancer-derived cell lines. Using immunoblot analyses we found essential differences in the pattern of endogenous Spry3 and Spry4 expression. While Spry4 expression was mitogen-dependent and repressed in a number of cells from higher malignant brain cancers, Spry3 levels neither fluctuated in response to serum withdrawal nor were repressed in glioblastoma (GBM)-derived cell lines. In accordance to the well-known inhibitory role of Spry proteins in fibroblast growth factor (FGF)-mediated signaling, both Spry proteins were able to interfere with FGF-induced activation of the MAPK pathway although to a different extent. In response to serum solely, Spry4 exerts its role as a negative regulator of MAPK activation. Ectopic expression of Spry4 inhibited proliferation and migration of GBM-originated cells, positioning it as a tumor suppressor in brain cancer. In contrast, elevated Spry3 levels accelerated both proliferation and migration of these cell lines, while repression of Spry3 levels using shRNA caused a significant diminished growth and migration velocity rate of a GBM-derived cell line. This argues for a tumor-promoting function of Spry3 in GBMs. Based on these data we conclude that Spry3 and Spry4 fulfill different if not opposing roles within the cancerogenesis of brain malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.