This paper focuses on the analysis of size distributions of innovations, which are known to be highly skewed. We use patent citations as one indicator of innovation significance, constructing two large datasets from the European and US Patent Offices at a high level of aggregation, and the Trajtenberg (1990) dataset on CT scanners at a very low one. We also study self-assessed reports of patented innovation values using two very recent patent valuation datasets from the Netherlands and the UK, as well as a small dataset of patent license revenues of Harvard University. Statistical methods are applied to analyse the properties of the empirical size distributions, where we put special emphasis on testing for the existence of 'heavy tails', i.e., whether or not the probability of very large innovations declines more slowly than exponentially. While overall the distributions appear to resemble a lognormal, we argue that the tails are indeed fat. We invoke some recent results from extreme value statistics and apply the Hill (1975) estimator with data-driven cut-offs to determine the tail index for the right tails of all datasets except the NL and UK patent valuations. On these latter datasets we use a maximum likelihood estimator for grouped data to estimate the Pareto exponent for varying definitions of the right tail. We find significantly and consistently lower tail estimates for the returns data than the citation data (around 0.7 vs. 3-5). The EPO and US patent citation tail indices are roughly constant over time (although the US one does grow somewhat in the last periods) but the latter estimates are significantly lower than the former. The heaviness of the tails, particularly as measured by financial indices, we argue, has significant implications for technology policy and growth theory, since the second and possibly even the first moments of these distributions may not exist.JEL Codes: C16, O31, O33
We study the structure of inter-industry relationships using networks of
money flows between industries in 20 national economies. We find these networks
vary around a typical structure characterized by a Weibull link weight
distribution, exponential industry size distribution, and a common community
structure. The community structure is hierarchical, with the top level of the
hierarchy comprising five industry communities: food industries, chemical
industries, manufacturing industries, service industries, and extraction
industries.Comment: 14 pages, 7 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.