Seventeen adults received the antifibrinolytic drug tranexamic acid during cardiac surgery utilizing extracorporeal circulation (ECC). In 8 patients, drug administration began prior to skin incision (pre-ECC); infusions commenced after ECC and protamine administration in another 9 patients (post-ECC). Compared with the post-ECC group, the pre-ECC group exhibited less bleeding via mediastinal drains (420 vs. 655 mL/12 h median, P = 0.024), decreased frequency of the presence (greater than or equal to 10 micrograms/mL) of fibrin split products (P less than 0.05), and greater platelet dense granule content of adenosine diphosphate after surgery (15.47 vs. 4.05 nmoles/mg protein median, P = 0.021). Follow-up in vitro study of tranexamic acid inhibition of plasmin-induced platelet activation utilizing normal human platelet rich plasma and porcine plasmin revealed a 13-fold lower concentration of tranexamic acid for 50% inhibition when plasmin was preincubated with the drug (1.2 micrograms/mL, 95% CI = 1.13-1.60 micrograms/mL) compared to when platelet rich plasma was preincubated with the drug (16 micrograms/mL, 95% CI = 7.3-99. micrograms/mL). Plasmin inactivated with tranexamic acid retained its ability to inhibit thrombin-induced platelet activation, thus suggesting that tranexamic acid inhibits plasmin's catalytic activity and not its binding to platelets. Both clot lysis and platelet dysfunction may contribute to bleeding after ECC. Tranexamic acid blocks plasmin-induced partial platelet activation during ECC, thus preserving platelet function and promoting hemostasis after ECC.
ATP and ADP are simultaneously released from activated platelets in equimolar concentrations. Micromolar concentrations of ATP inhibit platelet aggregation by both competitive and non-competitive mechanisms. The current studies addressed the question of how platelets respond to agonists in the presence of nanomolar and micromolar concentrations of ATP and ADP alone or in combination. This is a significant issue since the concentration of ATP +/- ADP may vary widely within a microenvironment depending upon the source and cause for the release of the nucleotides. ATP (1-10 nM) was found to significantly enhance the thromboxane A2 analog, U44619-, collagen- and thrombin-induced platelet aggregations. Conversely, ATP at 1-100 microM inhibited these same reactions. ADP, in general, behaved exactly opposite to ATP. When equal amounts of ATP and ADP were added together the ADP response appeared to predominate. The observed ATP-induced response was not due to a hydrolytic product as evidenced by an unaltered response to ATP in the presence of adenosine deaminase or the ATP generating system, creatine phosphate plus creatine phosphokinase. Adenosine (1-10 nM), like ADP, inhibited agonist-induced platelet aggregation. The stimulation of agonist-induced platelet aggregation by 1-10 nM extracellular ATP appears to depend upon the phosphorylation of platelet membrane ecto proteins. The ATP analog, beta gamma-methylene ATP, that is incapable of serving as a phosphate donor for protein kinases, inhibited rather than stimulated agonist-induced platelet aggregation. The dual response of platelets to low and high concentrations of extracellular ATP +/- ADP may play a physiological role in hemostasis and thrombosis under normal and pathological conditions.
The development of drugs to neutralize the action of thrombin has to date focused on the alpha form of the protease. It is generally agreed that inactive prothrombin is proteolytically converted to active alpha-thrombin which may be further hydrolyzed to beta- and gamma-thrombin. While all three forms of the enzyme retain catalytic activities, only alpha-thrombin is presumed to be physiologically important. The beta- and gamma-thrombin are presumed to be degradation products of no physiological significance. Our demonstration that beta- and gamma-thrombin selectively activate PAR-4 in this and a previous report (J. Biol. Chem. 276, 21173-21183, 2001) necessitates a reevaluation of how we view their physiological roles and how we approach the pharmacological regulation of their actions. Beta-thrombin, like gamma-thrombin, at nM levels selectively activates PAR-4. This was demonstrated by full retention of aggregatory activity with platelets whose PAR-1 and GP Ib receptors were inactivated. Furthermore, the beta-thrombin response was abrogated by desensitizing platelets with suboptimal levels of the thrombin receptor activating peptide for PAR-4 (TRAP-4). For beta-thrombin and gamma-thrombin to have a physiological role, it is necessary to show they can be generated under physiological conditions. We demonstrate, for the first time, that alpha-thrombin is hydrolyzed in less than 1 min by activated factor X at physiological pH, in vitro. This implies that alpha-thrombin may be rapidly converted to beta-thrombin and/or gamma-thrombin in vivo in the proper microenvironment. The differential activation of the three platelet thrombin receptors by alpha-, beta- and gamma-thrombin implies selective structural variations between these thrombin species. Structural differences are likely to account for the marked differential responses observed with the antithrombotic, hirudin, which inhibits alpha-thrombin , is a slightly weaker inhibitor of beta-thrombin and a very weak inhibitor of gamma-thrombin -induced platelet aggregations. The converse order of inhibition is observed with the physiological protease inhibitor, alpha(1)-antitrypsin. Finally, a non-traditional inhibitor, histone-1, selectively inhibits only beta- and gamma-thrombin , primarily at the receptor level of PAR-4 rather than on the thrombin molecule. Trypsin, like beta- and gamma-thrombin , activates PAR-4 and is also inactive with TRAP-4 desensitized platelets. Therefore, it was reasoned that trypsin would be more structurally similar to gamma-thrombin than to alpha-thrombin. The analysis of the crystalline structures of alpha-, gamma-thrombin and trypsin from the databases confirm that this is the case. These findings should help to elucidate structure-function relationships of the different thrombins and may aid in the development of new anti-thrombotic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.