Rapid onset natural hazards have claimed more than 2.8 million lives worldwide in the past 20 years. This category includes such events as earthquakes, landslides, hurricanes, tornados, floods, volcanic eruptions, wildfires, and tsunamis. Effective hazard mitigation is particularly difficult in such cases, since the time available to issue warnings can be very short or even nonexistent. This paper presents the concept of a local warning system that exploits and integrates the existing technologies of risk evaluation, environmental measurement, and telecommunications. We describe Project THRUST, a successful implementation of this general, systematic approach to tsunamis. The general approach includes pre‐event emergency planning, real‐time hazard assessment, and rapid warning via satellite communication links.
The purpose of this study is to examine variations in the response of an island system (the Hawaiian Islands, in this case) to an incoming tsunamilike wave pulse approaching the system along various azimuths. Simulations were carried out numerically by using an explicit finite‐difference analog for the linearized equations of motion and continuity for long waves in a variable depth ocean. The model topography is based on the submarine topography of the Hawaiian Island region. Island coastlines are fully reflecting, so no attempt to simulate runup was made. Qualitative comparisons between model results and historical data from tsunamis approaching along similar azimuths show that the model produces realistic simulations. Azimuths were chosen for waves approaching from four general geographic areas: South America, Alaska, Aleutians‐Kuriles‐Japan‐Philippines, and Southwest Pacific. Nearly all distant tsunamis striking Hawaii have come from one of these areas. Our conclusions are: (1) Tsunami response in the overall system does not vary greatly over small (10°–15°) changes in azimuth but does vary significantly over large changes (>60°). (2) Local response may vary greatly with azimuth, but certain areas seem to respond strongly to tsunamis approaching from almost any direction. (3) Topographic focusing seems to play the dominant role in determining localized response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.