Telomerase is a ribonucleoprotein responsible for maintaining the ends of linear chromosomes in nearly all eukaryotic cells. In humans, expression of the enzyme is limited primarily to the germ line and progenitor cell populations. In the absence of telomerase activity, telomeres shorten with each cell division until a critical length is reached, which can result in the cessation of cell division. The enzyme is required for cell immortality, and its activity has been detected in the vast majority of human tumors. Because of this, telomerase is an attractive target for inhibition in anticancer therapy. To learn more about the biochemistry of the human enzyme and its substrate recognition, we have examined the binding properties of single-stranded oligonucleotide primers that serve as telomerase substrates in vitro. We have used highly purified human enzyme and employed a two-primer method for determining the dissociation rates of these primers. Primers having sequence permutations of (TTAGGG)(3) were found to have considerably different affinities. They had t(1/2) values that ranged from 14 min to greater than 1200 min at room temperature. A primer ending in the GGG register formed the most stable complex with the enzyme. This particular register imparted stability to a nontelomeric primer resulting in a nearly 100-fold decrease in the k(off). We have found that interactions of telomerase with primer substrates are stabilized mainly by contacts with the protein subunit of the enzyme (hTERT). Base-pairing between the primer and the template region of telomerase contributes minimally to its stabilization.
Purpose
In other cancer types, HPV infection has been reported to coincide with overexpression of HER2 and HER3, however the association between HER2 or HER3 expression or dimer formation in HNSCC has not been reported. Overexpression of HER2 and HER3 may contribute to resistance to EGFR inhibitors, including cetuximab, although the contribution of HPV in modulating cetuximab response remains unknown. Determination of heterodimerization of HER receptors is challenging and has not been reported in HNSCC. The present study aimed to determine the expression of HER proteins in HPV[+] versus HPV[−] HNSCC tumors using a proximity-based protein expression assay (VeraTag), and to determine the efficacy of HER targeting agents in HPV[+] and HPV[−] HNSCC cell lines.
Experimental Design
Expression of total HER1, HER2, and HER3, p95HER2, p-HER3, HER1:HER1 homodimers, HER2:HER3 heterodimers and the HER3-PI3K complex in 88 HNSCC was determined using VeraTag, including 33 baseline tumors from individuals treated in a trial including cetuximab. Inhibition of cell growth and protein activation with cetuximab and afatinib was compared in HPV[+] and HPV[−] cetuximab-resistant cell lines.
Results
Expression of total HER2, total HER3, HER2:HER3 heterodimers, and the HER3:PI3K complex were significantly elevated in HPV[+] HNSCC. Total EGFR was significantly increased in HPV[−] HNSCC where VeraTag assay results correlated with IHC. Afatinib significantly inhibited cell growth when compared to cetuximab in the HPV[+] and HPV[−] cetuximab-resistant HNSCC cell lines.
Conclusion
These findings suggest that agents targeting multiple HER proteins may be effective in the setting of HPV[+] HNSCC and/or cetuximab resistance.
In the current genomic era, increasing evidence demonstrates that approximately 2% of HER2-negative breast cancers, by current standard testings, harbor activating mutations of ERBB2. However, whether patients with HER2-negative breast cancer with activating mutations of ERBB2 also experience response to anti-HER2 therapies remains unclear. This case report describes a patient with HER2-nonamplified heavily pretreated breast cancer who experienced prolonged response to trastuzumab in combination with pertuzumab and fulvestrant. Further molecular analysis demonstrated that her tumors had an elevated HER2 dimerization that corresponded to ERBB2 S310F mutation. Located in the extracellular domain of the HER2 protein, this mutation was reported to promote noncovalent dimerization that results in the activation of the downstream signaling pathways. This case highlights the fact that HER2-targeted therapy may be valuable in patients harboring an ERBB2 S310F mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.