SummaryThe past 10 years have heralded remarkable progress in the understanding of the biogenesis of c-type cytochromes. The hallmark of c-type cytochrome synthesis is the covalent ligation of haem vinyl groups to two cysteinyl residues of the apocytochrome (at a CysXxx-Yyy-Cys-His signature motif). From genetic, genomic and biochemical studies, it is clear that three distinct systems have evolved in nature to assemble this ancient protein. In this review, common principles of assembly for all systems and the molecular mechanisms predicted for each system are summarized. Prokaryotes, plant mitochondria and chloroplasts use either system I or II, which are each predicted to use dedicated mechanisms for haem delivery, apocytochrome ushering and thioreduction. Accessory proteins of systems I and II co-ordinate the positioning of these two substrates at the membrane surface for covalent ligation. The third system has evolved specifically in mitochondria of fungi, invertebrates and vertebrates. For system III, a pivotal role is played by an enzyme called cytochrome c haem lyase (CCHL) in the mitochondrial intermembrane space.
NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant growth, and pollen with reduced fitness. Thus, in contrast with mammals, our data demonstrate that neither cytosolic nor mitochondrial NTRs are essential in plants. Nevertheless, in the double mutant, the cytosolic thioredoxin h3 is only partially oxidized, suggesting an alternative mechanism for thioredoxin reduction. Plant growth in ntra ntrb plants is hypersensitive to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, and thioredoxin h3 is totally oxidized under this treatment. Interestingly, this BSO-mediated growth arrest is fully reversible, suggesting that BSO induces a growth arrest signal but not a toxic accumulation of activated oxygen species. Moreover, crossing ntra ntrb with rootmeristemless1, a mutant blocked in root growth due to strongly reduced glutathione synthesis, led to complete inhibition of both shoot and root growth, indicating that either the NTR or the glutathione pathway is required for postembryonic activity in the apical meristem.
RNA editing is a process that results in the production of a messenger RNA with nucleotide sequences that differ from those of the template DNA, and provides another mechanism for modulating gene expression. The phenomenon was initially described in the mitochondria of protozoa. Here we report that RNA editing is also required for the correct expression of plant mitochondrial genes. It has previously been proposed that in plant mitochondria there is a departure from the universal genetic code, with CGG specifying tryptophan instead of arginine. This was because CGG codons are often found in plant mitochondrial genes at positions corresponding to those encoding conserved tryptophans in other organisms. We have now found, however, wheat mitochondrial gene sequences containing C residues that are edited to U residues in the corresponding mRNA sequences. In this way, CGG codons can be changed to UGG codons in the mRNA so that tryptophan may be encoded according to the universal genetic code. Furthermore, for each codon modification resulting from a C----U conversion that we studied, we found a corresponding change in the amino acid that was encoded. RNA editing in wheat mitochondria can thus maintain genetic information at the RNA level and as a result contribute to the conservation of mitochondrial protein sequences among plants.
Plants possess two well described thioredoxin systems: a cytoplasmic system including several thioredoxins and an NADPH-dependent thioredoxin reductase and a specific chloroplastic system characterized by a ferredoxin-dependent thioredoxin reductase. On the basis of biochemical activities, plants also are supposed to have a mitochondrial thioredoxin system as described in yeast and mammals, but no gene encoding plant mitochondrial thioredoxin or thioredoxin reductase has been identified yet. We report the characterization of a plant thioredoxin system located in mitochondria. Arabidopsis thaliana genome sequencing has revealed numerous thioredoxin genes among which we have identified AtTRX-o1, a gene encoding a thioredoxin with a potential mitochondrial transit peptide. AtTRX-o1 and a second gene, AtTRX-o2, define, on the basis of the sequence and intron positions, a new thioredoxin type up to now specific to plants. We also have characterized AtNTRA, a gene encoding a protein highly similar to the previously described cytosolic NADPH-dependent thioredoxin reductase AtNTRB but with a putative presequence for import into mitochondria. Western blot analysis of A. thaliana subcellular and submitochondrial fractions and in vitro import experiments show that AtTRX-o1 and AtNTRA are targeted to the mitochondrial matrix through their cleavable N-terminal signal. The two proteins truncated to the estimated mature forms were produced in Escherichia coli; AtTRX-o1 efficiently reduces insulin in the presence of DTT and is reduced efficiently by AtNTRA and NADPH. Therefore, the thioredoxin and the NADPH-dependent thioredoxin reductase described here are proposed to constitute a functional plant mitochondrial thioredoxin system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.