Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.
We provide a comprehensive expression map of the different genes (TIR1/AFBs, ARFs and Aux/IAAs) involved in the signalling pathway regulating gene transcription in response to auxin in the shoot apical meristem (SAM).We demonstrate a relatively simple structure of this pathway using a high-throughput yeast two-hybrid approach to obtain the Aux/IAA-ARF full interactome.The topology of the signalling network was used to construct a model for auxin signalling and to predict a role for the spatial regulation of auxin signalling in patterning of the SAM.We used a new sensor to monitor the input in the auxin signalling pathway and to confirm the model prediction, thus demonstrating that auxin signalling is essential to create robust patterns at the SAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.