Candida species are the most common cause of opportunistic fungal infection worldwide. We report the genome sequences of six Candida species and compare these and related pathogens and nonpathogens. There are significant expansions of cell wall, secreted, and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the Mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/alpha2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine to serine genetic code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the C. albicans gene catalog, identifying many new genes.
Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin’s carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.
Two independent pathways oJ transcriptional regulation that show functional homology have been identified in yeast. It has been demonstrated previously that SWI5 encodes a zinc finger DNA-binding protein whose transcription and cellular localization both are cell cycle regulated. We show that ACE2, whose zinc finger region is nearly identical to that of SWI5, shows patterns of cell cycle-regulated transcription and nuclear localization similar to those seen previously for SMTIS. Despite their similarities, SWI5 and ACE2 function in separate pathways of transcriptional regulation. SWI5 is a transcriptional activator of the HO endonuclease gene, whereas ACE2 is not. In contrast, ACE2 is a transcriptional activator of the CTSl gene (which encodes chitinase), whereas SWI5 is not. An additional parallel between the SWI5/HO pathway and the ACE2/CTS1 pathway is that HO and CTSl both are cell cycle regulated in the same way, and HO and CTSl both require the SWI4 and SWr6 transcriptional activators. Overproduction of either SWI5 or ACE2 permits transcriptional activation of the target gene from the other pathway, suggesting that the DNA-binding proteins are capable of binding in vivo to promoters that they do not usually activate. Chimeric SWI5/ACE2 protein fusion experiments suggest that promoter specificity resides in a domain distinct from the zinc finger domain.
SummaryMorphogenesis between yeast and hyphal growth is a characteristic associated with virulence in Candida albicans and involves changes in the cell wall. In Saccharomyces cerevisiae , the transcription factor pair Ace2p and Swi5p are key regulators of cell wall metabolism. Here, we have characterized the CaACE2 gene, which encodes the only C. albicans homologue of S. cerevisiae ACE2 and SWI5 . Deleting CaACE2 results in a defect in cell separation, increased invasion of solid agar medium and inappropriate pseudohyphal growth, even in the absence of external inducers. The mutant cells have reduced adherence to plastic surfaces and generate biofilms with distinctly different morphology from wild-type cells. They are also avirulent in a mouse model. Deleting CaACE2 has no effect on expression of the chitinase gene CHT2 , but expression of CHT3 and the putative cell wall genes CaDSE1 and CaSCW11 is reduced in both yeast and hyphal forms . The CaAce2 protein is localized to the daughter nucleus of large budded cells at the end of mitosis. C. albicans Ace2p therefore plays a major role in morphogenesis and adherence and resembles S. cerevisiae Ace2p in function.
Candida dubliniensis is the closest known relative of Candida albicans, the most pathogenic yeast species in humans. However, despite both species sharing many phenotypic characteristics, including the ability to form true hyphae, C. dubliniensis is a significantly less virulent and less versatile pathogen. Therefore, to identify C. albicans-specific genes that may be responsible for an increased capacity to cause disease, we have sequenced the C. dubliniensis genome and compared it with the known C. albicans genome sequence. Although the two genome sequences are highly similar and synteny is conserved throughout, 168 species-specific genes are identified, including some encoding known hyphal-specific virulence factors, such as the aspartyl proteinases Sap4 and Sap5 and the proposed invasin Als3. Among the 115 pseudogenes confirmed in C. dubliniensis are orthologs of several filamentous growth regulator (FGR) genes that also have suspected roles in pathogenesis. However, the principal differences in genomic repertoire concern expansion of the TLO gene family of putative transcription factors and the IFA family of putative transmembrane proteins in C. albicans, which represent novel candidate virulence-associated factors. The results suggest that the recent evolutionary histories of C. albicans and C. dubliniensis are quite different. While gene families instrumental in pathogenesis have been elaborated in C. albicans, C. dubliniensis has lost genomic capacity and key pathogenic functions. This could explain why C. albicans is a more potent pathogen in humans than C. dubliniensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.