Two chiral complexes (1-SDS and 1-SDBS) were prepared via the ionic self-assembly of a chiral perylene diimide tecton with oppositely charged surfactants. The effect of surfactant tail architecture on the self-assembly properties and supramolecular structure was investigated in detail using UV-vis, IR, circular dichroism, light microscopy, X-ray diffraction studies, and electron microscopy. The results obtained revealed the molecular chirality of the parent perylene tecton could be translated into supramolecular helical chirality of the resulting complexes via primary ionic interactions through careful choice of solvent and concentration. Differing solvent-dependent aggregation behavior was observed for these complexes as a result of the different possible noncovalent interactions via the surfactant alkyl tails. The results presented in this study demonstrate that ionic self-assembly (ISA) is a facile strategy for the production of chiral supramolecular materials based on perylene diimides. The structure-function relationship is easily explored here due to the wide selection and easy availability of common surfactants.
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid l‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.