The HER2-targeted antibody–drug conjugate trastuzumab emtansine (T-DM1) is approved for the treatment of metastatic, HER2-positive breast cancer after prior trastuzumab and taxane therapy, and has also demonstrated efficacy in the adjuvant setting in incomplete responders to neoadjuvant therapy. Despite its objective activity, intrinsic and acquired resistance to T-DM1 remains a major clinical challenge. T-DM1 mediates its activity in a number of ways, encompassing HER2 signalling blockade, Fc-mediated immune response and payload-mediated microtubule poisoning. Resistance mechanisms relating to each of these features have been demonstrated, and we outline the findings of these studies in this review. In our overview of the substantial literature on T-DM1 activity and resistance, we conclude that the T-DM1 resistance mechanisms most strongly supported by the experimental data relate to dysfunctional intracellular metabolism of the construct and subversion of DM1-mediated cell killing. Loss of dependence on signalling initiated by HER2–HER2 homodimers is not substantiated as a resistance mechanism by clinical or experimental studies, and the impact of EGFR expression and tumour immunological status requires further investigation. These findings are instructive with respect to strategies that might overcome T-DM1 resistance, including the use of second-generation anti-HER2 antibody–drug conjugates that deploy alternative linker-payload chemistries.
Molecular imaging receives increased attention for selecting patients who will benefit from targeted anticancer therapies. Neo-ALTTO (Neoadjuvant Lapatinib and/or Trastuzumab Treatment Optimisation) enrolled 455 women with invasive human epidermal growth factor receptor 2 (HER2)-positive breast cancer and compared rates of pathologic complete response (pCR) to neoadjuvant lapatinib, trastuzumab, and their combination. Each anti-HER2 therapy was given alone for 6 wk, followed by 12 wk of the same therapy plus weekly paclitaxel. The early metabolic effects of the anti-HER2 therapies on the primary tumors and their predictive values for pCR were assessed in a subset of patients. Methods: Eighty-six patients underwent 18 F-FDG PET/CT at baseline and weeks 2 and 6 of anti-HER2 treatment. An imaging core laboratory provided central validation, and 2 independent reviewers, masked to assigned treatment arm and clinical outcomes, performed consensus 18 F-FDG PET/CT readings. Maximum standardized uptake value (SUVmax) reductions from baseline were used to measure metabolic response. Results: Seventy-seven of the 86 enrolled patients presented an evaluable baseline 18 F-FDG PET/CT scan; of these, 68 and 66 were evaluable at weeks 2 and 6, respectively. Metabolic responses in the primary tumors were evident after 2 wk of targeted therapy and correlated highly with metabolic responses at week 6 (R 2 5 0.81). pCRs were associated with greater SUVmax reductions at both time points. Mean SUVmax reductions for pCR and non-pCR, respectively, were 54.3% versus 32.8% at week 2 (P 5 0.02) and 61.5% versus 34.1% at week 6 (P 5 0.02). 18 F-FDG PET/CT metabolic response rates at weeks 2 and 6 were 71.6% and 60%, respectively using European Organization for Research and Treatment of Cancer criteria; pCR rates were twice as high for 18 F-FDG PET/CT responders than nonresponders (week 2: 42% vs. 21%, P 5 0.12; week 6: 44% vs. 19%, P 5 0.05). Conclusion:Early metabolic assessment using 18 F-FDG PET/CT can identify patients with an increased likelihood of pCR after neoadjuvant trastuzumab, lapatinib, or their combination when given with chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.