Background
Saline-Adenine-Glucose-Mannitol (SAGM) and a variant solution, AS-1 have been used for over 30 years to preserve red blood cells (RBCs). Reputedly these RBC components have similar quality, although no paired study has been reported. To determine whether differences exist, a paired study of SAGM-RBCs and AS-1-RBCs was conducted to identify membrane changes, including microparticle (MP) quantitation and in vitro RBC-endothelial cell (EC) interaction.
Study Design and Methods
Two whole blood packs were pooled-and-split and RBCs prepared (n=6 pairs). One pack was suspended in SAGM and one in AS-1. Samples were collected during 42 days of refrigerated storage. RBC shape/size, glycophorin A (GPA)+ and phosphatidylserine (PS)+ MPs were measured by flow cytometry. RBC adhesion to ECs was determined by an in vitro flow perfusion assay. Routine parameters (pH, hemolysis) were also measured.
Results
Compared to SAGM-RBCs, AS-1-RBCs had lower hemolysis (p<0.04), lower GPA+ MPs (p<0.03) and lower PS+ MPs (p<0.03) from day 14 onwards. AS-1-RBCs had higher (p<0.02) side scatter from day 28 onwards, compared to SAGM-RBCs. SAGM-RBCs were more adherent to ECs at day 28 of storage compared to AS-1 RBCs (p=0.04), but reversed at day 42 (p=0.02). No significant differences in forward scatter or pH were found.
Conclusion
SAGM-RBCs lose more membrane during storage. SAGM-RBCs had increased adherence to ECs at day 28 of storage, while AS-1-RBCs were more adherent at day 42. The effect of these differences on the function and survival of SAGM-RBCs and AS-1-RBCs following transfusion remains to be determined.
Major histocompatibility complex class II (MHC II) expression and turn-over are regulated via its ubiquitination by the membrane associated RING-CH 1 (MARCH1) E3 ligase. Unexpectedly, we show that MHC II ubiquitination also impacts MHC I. Lack of MARCH1 in B cells and dendritic cells (DCs) resulted in a significant reduction in surface MHC I expression. This decrease was not directly caused by changes in MARCH1 ubiquitination of MHC I but indirectly by altered MHC II trafficking in the absence of its ubiquitination. Deletion of MHC II in March1-/- cells restored normal MHC I surface expression and replacement of wild type MHC II by a variant that could not be ubiquitinated caused a reduction in MHC I expression. Furthermore, these cells displayed inefficient presentation of peptide and protein antigen via MHC I to CD8+ T cells. In summary, we describe an unexpected intersection between MHC I and MHC II such that the surface expression of both molecules are indirectly and directly regulated by MARCH1 ubiquitination, respectively.
Changes to lectin binding during storage of RBCs suggest that significant changes occur to the carbohydrate structures at the RBC membrane. These findings provide further insight into the mechanisms of the RBC storage lesion and potential influence on RBC survival after transfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.