Mass transfer during the evolution of intermediate-mass stars in a close binary system can result in a rejuvenated and spun-up secondary star (which may appear as a rapidly rotating Be star) orbiting an unseen, stripped-down, remnant companion. One of the best candidates for such a system is the longperiod (127 days) binary / Per. Here we present new Hubble Space Telescope Goddard High Resolution Spectrograph spectra of / Per in several UV regions that show clearly for the Ðrst time the spectral signature of the faint remnant companion. We derive a double-lined solution for the radial velocity curve that yields masses of 9.3^0.3 and 1.14^0.04 for the Be star and companion, respectively. A M _ M _ Doppler tomographic reconstruction of the secondary spectrum shows a rich spectrum dominated by sharp Fe IV and Fe V lines, similar to those observed in hot sdO stars. Non-LTE spectrum synthesis indicates that the subdwarf has temperature kK and gravity log g \ 4.2^0.1 and that the T eff \ 53^3 subdwarfÈtoÈBe star Ñux ratio is 0.165^0.006 and 0.154^0.009 for the 1374 and 1647 regions, A respectively. The spectrum of the Be primary appears normal for a very rapidly rotating early B-type star, but we argue that the star is overluminous for its mass (perhaps owing to accretion-induced mixing). Additional sharp lines of Fe IV appear when the companion is in the foreground, and we show that these form in a heated region of the Be starÏs disk that faces the hot subdwarf.
There is growing evidence that some Be stars were spun up through mass transfer in a close binary system, leaving the former mass donor star as a hot, stripped-down object. There are five known cases of Be stars with hot subdwarf (sdO) companions that were discovered through International Ultraviolet Explorer (IUE) spectroscopy. Here we expand the search for Be+sdO candidates using archival FUV spectra from IUE. We collected IUE spectra for 264 stars and formed cross-correlation functions (CCFs) with a model spectrum for a hot subdwarf. Twelve new candidate Be+sdO systems were found, and eight of these display radial velocity variations associated with orbital motion. The new plus known Be+sdO systems have Be stars with spectral subtypes of B0 to B3, and the lack of later-type systems is surprising given the large number of cooler B-stars in our sample. We discuss explanations for the observed number and spectral type distribution of the Be+sdO systems, and we argue that there are probably many Be systems with stripped companions that are too faint for detection through our analysis.
The B emission-line stars are rapid rotators that were probably spun up by mass and angular momentum accretion through mass transfer in an interacting binary. Mass transfer will strip the donor star of its envelope to create a small and hot subdwarf remnant. Here we report on Hubble Space Telescope/STIS far-ultraviolet spectroscopy of a sample of Be stars that reveals the presence of the hot sdO companion through the calculation of cross-correlation functions of the observed and model spectra. We clearly detect the spectral signature of the sdO star in 10 of the 13 stars in the sample, and the spectral signals indicate that the sdO stars are hot, relatively faint, and slowly rotating as predicted by models. A comparison of their temperatures and radii with evolutionary tracks indicates that the sdO stars occupy the relatively long-lived, He-core burning stage. Only 1 of the 10 detections was a known binary prior to this investigation, which emphasizes the difficulty of finding such Be+sdO binaries through optical spectroscopy. However, these results and others indicate that many Be stars probably host hot subdwarf companions.
We produce and analyze eclipse time variation (ETV) curves for some 2600 targeted main-field Kepler binaries. We find good to excellent evidence for a third body in 222 systems via either the light-travel-time (LTTE) or dynamical effect delays. Approximately half of these systems have been discussed in previous work, while the rest are newly reported here. Via detailed analysis of the ETV curves using high-level analytic approximations, we are able to extract system masses and information about the three-dimensional characteristics of the triple for 62 systems which exhibit both LTTE and dynamical delays. For the remaining 160 systems whose ETV curves are dominated by LTTE delays we are able to extract the outer orbital period, eccentricity , and longitude of periastron as well as the mass function of the triple. In general, our solutions improve upon those published earlier. New techniques of preprocessing the flux time series are applied to eliminate false positive triples and to enhance the ETV curves. The set of triples with outer orbital periods shorter than ∼2000 days is now sufficiently numerous for meaningful statistical analysis. We find that (i) as predicted, there is a peak near i m 40 • in the distribution of the triple vs. inner binary mutual inclination angles that provides strong confirmation of the operation of Kozai-Lidov cycles with tidal friction; (ii) the median eccentricity of the third-body orbits is e 2 = 0.35; (iii) there is a deficit of triple systems with binary periods 1 day and outer periods between ∼50 and 200 days which might help guide the refinement of theories of the formation and evolution of close binaries; and (iv) the substantial fraction of Kepler binaries which have third-body companions is consistent with a very large fraction of all binaries being part of triples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.