BackgroundPreventive strategies to reduce clinically significant medication errors (MEs), such as medication review, are often limited by human resources. Identifying high-risk patients to allow for appropriate resource allocation is of the utmost importance. To this end, we developed a predictive model to identify high-risk patients and assessed its impact on clinical decision-making.MethodsFrom March 1st to April 31st 2014, we conducted a prospective cohort study on adult inpatients of a 1,644-bed University Hospital Centre. After a clinical evaluation of identified MEs, we fitted and internally validated a multivariate logistic model predicting their occurrence. Through 5,000 simulated randomized controlled trials, we compared two clinical decision pathways for intervention: one supported by our model and one based on the criterion of age.ResultsAmong 1,408 patients, 365 (25.9%) experienced at least one clinically significant ME. Eleven variables were identified using multivariable logistic regression and used to build a predictive model which demonstrated fair performance (c-statistic: 0.72). Major predictors were age and number of prescribed drugs. When compared with a decision to treat based on the criterion of age, our model enhanced the interception of potential adverse drug events by 17.5%, with a number needed to treat of 6 patients.ConclusionWe developed and tested a model predicting the occurrence of clinically significant MEs. Preliminary results suggest that its implementation into clinical practice could be used to focus interventions on high-risk patients. This must be confirmed on an independent set of patients and evaluated through a real clinical impact study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.