Systems biology can unravel complex biology but has not been extensively applied to human newborns, a group highly vulnerable to a wide range of diseases. We optimized methods to extract transcriptomic, proteomic, metabolomic, cytokine/chemokine, and single cell immune phenotyping data from <1 ml of blood, a volume readily obtained from newborns. Indexing to baseline and applying innovative integrative computational methods reveals dramatic changes along a remarkably stable developmental trajectory over the first week of life. This is most evident in changes of interferon and complement pathways, as well as neutrophil-associated signaling. Validated across two independent cohorts of newborns from West Africa and Australasia, a robust and common trajectory emerges, suggesting a purposeful rather than random developmental path. Systems biology and innovative data integration can provide fresh insights into the molecular ontogeny of the first week of life, a dynamic developmental phase that is key for health and disease.
Infant vaccination with 3 doses of PCV10 or PCV13 is safe and immunogenic in a highly endemic setting; however, to significantly reduce pneumococcal disease in these settings, PCVs with broader serotype coverage and potency to reduce pneumococcal carriage are needed.
BackgroundChildren in third-world settings including Papua New Guinea (PNG) experience early onset of carriage with a broad range of pneumococcal serotypes, resulting in a high incidence of severe pneumococcal disease and deaths in the first 2 years of life. Vaccination trials in high endemicity settings are needed to provide evidence and guidance on optimal strategies to protect children in these settings against pneumococcal infections.MethodsThis report describes the rationale, objectives, methods, study population, follow-up and specimen collection for a vaccination trial conducted in an endemic and logistically challenging setting in PNG. The trial aimed to determine whether currently available pneumococcal conjugate vaccines (PCV) are suitable for use under PNG’s accelerated immunization schedule, and that a schedule including pneumococcal polysaccharide vaccine (PPV) in later infancy is safe and immunogenic in this high-risk population.ResultsThis open randomized-controlled trial was conducted between November 2011 and March 2016, enrolling 262 children aged 1 month between November 2011 and April 2014. The participants were randomly allocated (1:1) to receive 10-valent PCV (10vPCV) or 13-valent PCV (13vPCV) in a 1-2-3-month schedule, with further randomization to receive PPV or no PPV at age 9 months, followed by a 1/5th PPV challenge at age 23 months. A total of 1229 blood samples were collected to measure humoral and cellular immune responses and 1238 nasopharyngeal swabs to assess upper respiratory tract colonization and carriage load. Serious adverse events were monitored throughout the study. Of the 262 children enrolled, 87% received 3 doses of PCV, 79% were randomized to receive PPV or no PPV at age 9 months, and 67% completed the study at 24 months of age with appropriate immunization and challenge.ConclusionLaboratory testing of the many samples collected during this trial will determine the impact of the different vaccine schedules and formulations on nasopharyngeal carriage, antibody production and function, and immune memory. The final data will inform policy on pneumococcal vaccine schedules in countries with children at high risk of pneumococcal disease by providing direct comparison of an accelerated schedule of 10vPCV and 13vPCV and the potential advantages of PPV following PCV immunization.Trial registrationClinicalTrials.gov CTN NCT01619462, retrospectively registered on May 28, 2012
BackgroundPneumonia and meningitis are common causes of severe childhood illness in Papua New Guinea (PNG). The etiology of both clinical conditions in PNG has not been recently assessed. Changes in lifestyle, provision and access to healthcare, antimicrobial utilization and resistance, and the national childhood vaccination schedule necessitate reassessment.MethodsA prospective case-control study was undertaken, enrolling children <5 years of age to determine the contemporary etiology of clinically defined moderate or severe pneumonia or suspected meningitis. Cases were identified following presentation for inpatient or outpatient care in Goroka town, the major population centre in the Eastern Highlands Province. Following enrolment, routine diagnostic specimens including blood, nasopharyngeal swabs, urine and (if required) cerebrospinal fluid, were obtained. Cases residing within one hour’s drive of Goroka were followed up, and recruitment of healthy contemporaneous controls was undertaken in the cases’ communities.Results998 cases and 978 controls were enrolled over 3 years. This included 784 cases (78.6%) with moderate pneumonia, 187 (18.7%) with severe pneumonia and 75 (7.5%) with suspected meningitis, of whom 48 (4.8%) had concurrent pneumonia. The median age of cases was 7.8 months (Interquartile range [IQR] 3.9–14.3), significantly lower than community controls, which was 20.8 months (IQR 8.2–36.4). Half the cases were admitted to hospital (500/998; 50.1%). Recruitment of cases and controls and successful collection of diagnostic specimens improved throughout the study, with blood volume increasing and rates of blood culture contamination decreasing. The overall case fatality rate was 18/998 (1.8%). Of cases eligible for follow-up, outcome data was available from 76.7%. Low but increasing coverage of Haemophilus influenzae type B conjugate vaccines on the national schedule was observed during the study period: three dose DTPw-HepB-Hib coverage in children >3 months increased from 14.9 to 43.0% and 29.0 to 47.7% in cases and controls (both p < 0.001). Despite inclusion in the national immunization program in 2014, 2015 PCV13 three-dose coverage in cases and controls >3 months was only 4.0 and 6.5%.ConclusionsRecruitment of large numbers of pediatric pneumonia and meningitis cases and community controls in a third-world setting presents unique challenges. Successful enrolment of 998 cases and 978 controls with comprehensive clinical data, biological specimens and follow up was achieved. Increased vaccine coverage remains an ongoing health priority.Electronic supplementary materialThe online version of this article (doi:10.1186/s41479-017-0029-y) contains supplementary material, which is available to authorized users.
We investigated the immunogenicity, seroprotection rates and persistence of immune memory in young children at high risk of pneumococcal disease in Papua New Guinea (PNG). Children were primed with 10-valent (PCV10) or 13-valent pneumococcal conjugate vaccines (PCV13) at 1, 2 and 3 months of age and randomized at 9 months to receive PPV (PCV10/PPV-vaccinated, n = 51; PCV13/PPV-vaccinated, n = 52) or no PPV (PCV10/PPV-naive, n = 57; PCV13/PPV-naive, n = 48). All children received a micro-dose of PPV at 23 months of age to study the capacity to respond to a pneumococcal challenge. PPV vaccination resulted in significantly increased IgG responses (1.4 to 10.5-fold change) at 10 months of age for all PPV-serotypes tested. Both PPV-vaccinated and PPV-naive children responded to the 23-month challenge and post-challenge seroprotection rates (IgG ≥ 0.35 μg/mL) were similar in the two groups (80–100% for 12 of 14 tested vaccine serotypes). These findings show that PPV is immunogenic in 9-month-old children at high risk of pneumococcal infections and does not affect the capacity to produce protective immune responses. Priming with currently available PCVs followed by a PPV booster in later infancy could offer improved protection to young children at high risk of severe pneumococcal infections caused by a broad range of serotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.