Hypohidrotic and anhidrotic ectodermal dysplasia (HED/EDA) is a rare genodermatosis characterized by abnormal development of sweat glands, teeth, and hair. Three disease-causing genes have been hitherto identified, namely, (1) EDA1 accounting for X-linked forms, (2) EDAR, and (3) EDARADD, causing both autosomal dominant and recessive forms. Recently, WNT10A gene was identified as responsible for various autosomal recessive forms of ectodermal dysplasias, including onycho-odonto-dermal dysplasia (OODD) and Schöpf-Schulz-Passarge syndrome. We systematically studied EDA1, EDAR, EDARADD, and WNT10A genes in a large cohort of 65 unrelated patients, of which 61 presented with HED/EDA. A total of 50 mutations (including 32 novel mutations) accounted for 60/65 cases in our series. These four genes accounted for 92% (56/61 patients) of HED/EDA cases: (1) the EDA1 gene was the most common disease-causing gene (58% of cases), (2)WNT10A and EDAR were each responsible for 16% of cases. Moreover, a novel disease locus for dominant HED/EDA mapped to chromosome 14q12-q13.1. Although no clinical differences between patients carrying EDA1, EDAR, or EDARADD mutations could be identified, patients harboring WNT10A mutations displayed distinctive clinical features (marked dental phenotype, no facial dysmorphism), helping to decide which gene should be first investigated in HED/EDA.
Dyschondrosteosis (DCS) is an autosomal dominant form of mesomelic dysplasia with deformity of the forearm (Madelung deformity; ref. 3). Based on the observation of XY translocations (p22,q12; refs 4-6) in DCS patients, we tested the pseudoautosomal region in eight families with DCS and showed linkage of the DCS gene to a microsatellite DNA marker at the DXYS233 locus (Zmax=6.26 at theta=0). The short stature homeobox-containing gene (SHOX), involved in idiopathic growth retardation and possibly Turner short stature, maps to this region and was therefore regarded as a strong candidate gene in DCS. Here, we report large-scale deletions (in seven families) and a nonsense mutation (in one family) of SHOX in patients with DCS and show that Langer mesomelic dwarfism results from homozygous mutations at the DCS locus.
Pitt-Hopkins syndrome is a severe congenital encephalopathy recently ascribed to de novo heterozygous TCF4 gene mutations. We report a series of 13 novel PHS cases with a TCF4 mutation and show that EEG, brain magnetic resonance imagain (MRI), and immunological investigations provide valuable additional clues to the diagnosis. We confirm a mutational hot spot in the basic domain of the E-protein. Functional studies illustrate that heterodimerisation of mutant TCF4 proteins with a tissue-specific transcription factor is less effective than that homodimerisation in a luciferase reporter assay. We also show that the TCF4 expression pattern in human embryonic development is widespread but not ubiquitous. In summary, we further delineate an underdiagnosed mental retardation syndrome, highlighting TCF4 function during development and facilitating diagnosis within the first year of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.