Female breast cancer is the major cause of cancer-related deaths in western countries. Efforts in computer vision have been made in order to help improving the diagnostic accuracy by radiologists. In this paper, we present a methodology that uses Moran's index and Geary's coefficient measures in breast tissues extracted from mammogram images. These measures are used as input features for a support vector machine classifier with the purpose of distinguishing tissues between normal and abnormal cases as well as classifying them into benign and malignant cancerous cases. The use of both proposed techniques showed to be very promising, since we obtained an accuracy of 96.04% and Az ROC of 0.946 with Geary's coefficient and an accuracy of 99.39% and Az ROC of 1 with Moran's index to discriminate tissues in mammograms as normal or abnormal. We also obtained accuracy of 88.31% and Az ROC of 0.804 with Geary's coefficient and accuracy of 87.80% and Az ROC of 0.89 with Moran's index to discriminate tissues in mammograms as benign and malignant.
The COVID-19 pandemic, which originated in December 2019 in the city of Wuhan, China, continues to have a devastating effect on the health and well-being of the global population. Currently, approximately 8.8 million people have already been infected and more than 465,740 people have died worldwide. An important step in combating COVID-19 is the screening of infected patients using chest X-ray (CXR) images. However, this task is extremely time-consuming and prone to variability among specialists owing to its heterogeneity. Therefore, the present study aims to assist specialists in identifying COVID-19 patients from their chest radiographs, using automated computational techniques. The proposed method has four main steps: (1) the acquisition of the dataset, from two public databases; (2) the standardization of images through preprocessing; (3) the extraction of features using a deep features-based approach implemented through the networks VGG19, Inception-v3, and ResNet50; (4) the classifying of images into COVID-19 groups, using eXtreme Gradient Boosting (XGBoost) optimized by particle swarm optimization (PSO). In the best-case scenario, the proposed method achieved an accuracy of 98.71%, a precision of 98.89%, a recall of 99.63%, and an F1-score of 99.25%. In our study, we demonstrated that the problem of classifying CXR images of patients under COVID-19 and non-COVID-19 conditions can be solved efficiently by combining a deep features-based approach with a robust classifier (XGBoost) optimized by an evolutionary algorithm (PSO). The proposed method offers considerable advantages for clinicians seeking to tackle the current COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.