The goal of the present paper is to study close approaches of a cloud of particles with an oblate planet, which means that there is a J 2 term in the gravitational potential of the planet. This cloud of particles is assumed to be created during the passage of a spacecraft by the periapsis of its orbit, by an explosion or any other disruptive event. The system is formed by two large bodies (Sun and planet), assumed to be in circular orbits around the center of mass of the system, and the cloud of particles. The particles that belong to the cloud make a close approach to the flat planet and then they are dispersed by the gravitational force of the planet. The motion is governed by the equations of motion given by the planar restricted circular three-body problem plus the effects of the oblateness of the planet. Jupiter is used for numerical simulations. The results show the differences between the behavior of the cloud after the passage, considering or not the effects of the oblateness of the planet. The results show that the oblateness of the planet is equivalent to an increase in the mass of the planet.
Based on the Theory of Neuronal Group Selection (TNGS), proposed by Edelman, a network composed of one hundred Izhikevich spiking neurons is analyzed. In this study, a genetic algorithm is used to estimate the Izhikevich neuron model parameters in order to enable the self-organization of a neural network into a cluster of tightly coupled neural cells which fire and oscillate in synchrony at a predefined frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.