Critical thermal limits (CTLs) constrain the performance of organisms, shaping their abundance, current distributions, and future distributions. Consequently, CTLs may also determine the quality of ecosystem services as well as organismal and ecosystem vulnerability to climate change. As some of the most ubiquitous animals in terrestrial ecosystems, ants are important members of ecological communities. In recent years, an increasing body of research has explored ant physiological thermal limits. However, these CTL data tend to centre on a few species and biogeographical regions. To encourage an expansion of perspectives, we herein review the factors that determine ant CTLs and examine their effects on present and future species distributions and ecosystem processes. Special emphasis is placed on the implications of CTLs for safeguarding ant diversity and ant-mediated ecosystem services in the future. First, we compile, quantify, and categorise studies on ant CTLs based on study taxon, biogeographical region, methodology, and study question. Second, we use this comprehensive database to analyse the abiotic and biotic factors shaping ant CTLs. Our results highlight how CTLs may affect future distribution patterns and ecological performance in ants. Additionally, we identify the greatest remaining gaps in knowledge and create a research roadmap to promote rapid advances in this field of study.
Apesar da sua importância ecológica, os animais invertebrados são pouco apreciados pelas pessoas. Nas escolas, há uma lacuna na disseminação de informações relativas a esse grupo, principalmente quando se trata de invertebrados de ecossistemas pouco estudados, como é o caso da Caatinga. Assim, torna-se necessária a utilização de ferramentas paradidáticas para contemplar esses conteúdos, e desenvolver reflexões e empatia por parte dos estudantes para com esse grupo animal. Este trabalho teve como objetivo construir uma cartilha para divulgação do conhecimento científico sobre invertebrados da Caatinga, a qual será útil como material de apoio para professores no ensino de ciências.
To understand species’ responses to climate change, we must better comprehend the factors shaping physiological critical thermal limits. One factor of potential importance is nutrient availability. Carbohydrates are an energy source that can directly affect an organism's physiological state. Ants are among the most omnipresent and ecologically relevant animal groups on Earth, and many ant species consume carbohydrate‐based diets. Additionally, as ectotherms, ants are highly vulnerable to the effects of climate change. Here, we examined the relationship between foraging temperature, carbohydrate availability, and critical thermal maximum (CTmax) in ants (Hymenoptera: Formicidae). First, we conducted a laboratory experiment using 3–4 colonies of two species that forage at high temperatures (Camponotus blandus Smith and Dorymyrmex thoracicus Gallardo) and two species that forage at lower temperatures (Nylanderia fulva Mayr and Dolichoderus quadridenticulatus Roger). Each colony was divided into two experimental subcolonies, which were given diets containing different carbohydrate concentrations (5 vs. 20% sucrose solutions). We then measured CTmax. We also collected ants belonging to these species in the field and measured their CTmax. We found that CTmax was highest for the two species that forage at higher temperatures. For C. blandus and D. thoracicus, workers given 20% sucrose had higher CTmax than workers given 5% sucrose. No diet‐mediated differences in CTmax were seen for N. fulva and D. quadridenticulatus workers. Additionally, the experimental ants in both treatment groups had higher CTmax than their field‐collected conspecifics, except in the case of C. blandus. If carbohydrate‐rich diets can boost heat tolerance in some species, it is possible that changes in resource availability could determine how climate change affects ants, especially species with carbohydrate‐based diets. Furthermore, these impacts could ripple across the entire trophic network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.