Alveolar overdistention and cyclic reopening of collapsed alveoli have been implicated in the lung damage found in animals submitted to artificial ventilation. To test whether these phenomena are impairing the recovery of patients with acute respiratory distress syndrome (ARDS) submitted to conventional mechanical ventilation (MV), we evaluated the impact of a new ventilatory strategy directed at minimizing "cyclic parenchymal stretch." After receiving pre-established levels of hemodynamic, infectious, and general care, 28 patients with early ARDS were randomly assigned to receive either MV based on a new approach (NA, consisting of maintenance of end-expiratory pressures above the lower inflection point of the P x V curve, VT < 6 ml/kg, peak pressures < 40 cm H2O, permissive hypercapnia, and stepwise utilization of pressure-limited modes) or a conventional approach (C = conventional volume-cycled ventilation, VT = 12 ml/kg, minimum PEEP guided by FIO2 and hemodynamics and normal PaCO2 levels). Fifteen patients were selected to receive NA, exhibiting a better evolution of the PaO2/FIO2 ratio (p < 0.0001) and of compliance (p = 0.0018), requiring shorter periods under FIO2 > 50% (p = 0.001) and a lower FIO2 at the day of death (p = 0.0002). After correcting for baseline imbalances in APACHE II, we observed a higher weaning rate in NA (p = 0.014) but not a significantly improved survival (overall mortality: 5/15 in NA versus 7/13 in C, p = 0.45). We concluded that the NA ventilatory strategy can markedly improve the lung function in patients with ARDS, increasing the chances of early weaning and lung recovery during mechanical ventilation.
The associated use of permissive hypercapnia (PHY) and high PEEP levels (PEEP(IDEAL)) has been recently indicated as part of a lung-protective-approach (LPA) in acute respiratory distress syndrome (ARDS). However, the net hemodynamic effect produced by this association is not known. We analyzed the temporal hemodynamic effects of this combined strategy in 48 patients (mean age 34 +/- 13 yr) with ARDS, focusing on its immediate (after 1 h), early (first 36 h), and late (2nd-7th d) consequences. Twenty-five patients were submitted to LPA--with the combined use of permissive hypercapnia (PHY), VT < 6 ml/kg, distending pressures above PEEP < 20 cm H2O, and PEEP 2 cm H2O above the lower inflection point on the static inspiratory P-V curve (P(FLEX))- and 23 control patients were submitted to conventional mechanical ventilation. LPA was initiated at once, resulting in an immediate increase in heart rate (p = 0.0002), cardiac output (p = 0.0002), oxygen delivery (DO2l, p = 0.0003), and mixed venous Po2 (p = 0.0006), with a maintained systemic oxygen consumption (p = 0.52). The mean pulmonary arterial pressure markedly increased (mean increment 8.8 mm Hg; p < 0.0001), but the pulmonary vascular resistance did not change (p = 0.32). Cardiac filling pressures increased (p < 0.001) and the systemic vascular resistance fell (p = 0.003). All these alterations were progressively attenuated in the course of the first 36 h, despite persisting hypercapnia. Plasma lactate suffered a progressive decrement along the early period in LPA but not in control patients (p < 0.0001). No hemodynamic consequences of LPA were noticed in the late period and renal function was preserved. A multivariate analysis suggested that these acute hyperdynamic effects were related to respiratory acidosis, with no depressant effects ascribed to high PEEP levels. In contrast, high plateau pressures were associated with cardiovascular depression. Thus, as long as sufficiently low distending pressures are concomitantly applied, the sudden installation of PHY plus PEEP(IDEAL) induces a transitory hyperdynamic state and pulmonary hypertension without harmful consequences to this young ARDS population.
Intelligent Transportation Systems (ITS) rely on Inter-Vehicle Communication (IVC) to streamline the operation of vehicles by managing vehicle traffic, assisting drivers with safety and sharing information, as well as providing appropriate services for passengers. Traffic congestion is an urban mobility problem, which causes stress to drivers and economic losses. In this context, this work proposes a solution for the detection, dissemination and control of congested roads based on inter-vehicle communication, called INCIDEnT. The main goal of the proposed solution is to reduce the average trip time, CO emissions and fuel consumption by allowing motorists to avoid congested roads. The simulation results show that our proposed solution leads to short delays and a low overhead. Moreover, it is efficient with regard to the coverage of the event and the distance to which the information can be propagated. The findings of the investigation show that the proposed solution leads to (i) high hit rate in the classification of the level of congestion, (ii) a reduction in average trip time, (iii) a reduction in fuel consumption, and (iv) reduced CO emissions
Abstract-The use of pesticides in agriculture is essential to maintain the quality of large-scale production. The spraying of these products by using aircraft speeds up the process and prevents compacting of the soil. However, adverse weather conditions (e.g. the speed and direction of the wind) can impair the effectiveness of the spraying of pesticides in a target crop field. Thus, there is a risk that the pesticide can drift to neighboring crop fields. It is believed that a large amount of all the pesticide used in the world drifts outside of the target crop field and only a small amount is effective in controlling pests. However, with increased precision in the spraying, it is possible to reduce the amount of pesticide used and improve the quality of agricultural products as well as mitigate the risk of environmental damage. With this objective, this paper proposes a methodology based on Particle Swarm Optimization (PSO) for the fine-tuning of control rules during the spraying of pesticides in crop fields. This methodology can be employed with speed and efficiency and achieve good results by taking account of the weather conditions reported by a Wireless Sensor Network (WSN). In this scenario, the UAV becomes a mobile node of the WSN that is able to make personalized decisions for each crop field. The experiments that were carried out show that the optimization methodology proposed is able to reduce the drift of pesticides by fine-tuning of control rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.