The relatively recent discovery and characterization of human broadly neutralizing antibodies (bnAbs) against influenza virus provide valuable insights into antiviral and vaccine development. However, the factors that influence the evolution of high-affinity bnAbs remain elusive. We therefore explore the functional sequence space of bnAb C05, which targets the receptor-binding site (RBS) of influenza haemagglutinin (HA) via a long CDR H3. We combine saturation mutagenesis with yeast display to enrich for C05 variants of CDR H3 that bind to H1 and H3 HAs. The C05 variants evolve up to 20-fold higher affinity but increase specificity to each HA subtype used in the selection. Structural analysis reveals that the fine specificity is strongly influenced by a highly conserved substitution that regulates receptor binding in different subtypes. Overall, this study suggests that subtle natural variations in the HA RBS between subtypes and species may differentially influence the evolution of high-affinity bnAbs.
Chemoenzymatic modification of cell-surface glycan structures has emerged as a complementary approach to metabolic oligosaccharide engineering. Here, we identify
Pasteurella multocida
α2-3-sialyltransferase M144D mutant,
Photobacterium damsela
α2-6-sialyltransferase, and
Helicobacter mustelae
α1-2-fucosyltransferase, as efficient tools for live-cell glycan modification. Combining these enzymes with
Helicobacter pylori
α1-3-fucosyltransferase, we develop a host-cell-based assay to probe glycan-mediated influenza A virus (IAV) infection including wild-type and mutant strains of H1N1 and H3N2 subtypes. At high NeuAcα2-6-Gal levels, the IAV-induced host-cell death is positively correlated with haemagglutinin (HA) binding affinity to NeuAcα2-6-Gal. Remarkably, an increment of host-cell-surface sialyl Lewis X (sLe
X
) exacerbates the killing by several wild-type IAV strains and a previously engineered mutant HK68-MTA. Structural alignment of HAs from HK68 and HK68-MTA suggests formation of a putative hydrogen bond between Trp222 of HA-HK68-MTA and the C-4 hydroxyl group of the α1-3-linked fucose of sLe
X
, which may account for the enhanced host cell killing of that mutant.
SUMMARY
Influenza A virus hemagglutinin (HA) initiates viral entry by engaging host receptor sialylated glycans via its receptor-binding site (RBS). The amino-acid sequence of the RBS naturally varies across avian and human influenza virus subtypes and is also evolvable. However, functional sequence diversity in the RBS has not been fully explored. Here, we performed a large-scale mutational analysis of the RBS of A/WSN/33 (H1N1) and A/Hong Kong/1/1968 (H3N2) HAs. Many replication-competent mutants not yet observed in nature were identified, including some that could escape from an RBS-targeted broadly neutralizing antibody. This functional sequence diversity is made possible by pervasive epistasis in the RBS 220-loop and can be buffered by avidity in viral receptor binding. Overall, our study reveals that the HA RBS can accommodate a much greater range of sequence diversity that previously thought, which has significant implications for the complex evolutionary interrelationships between receptor specificity and immune escape.
SignificanceNeurotrophin receptors are a class of receptor tyrosine kinases that couple to signaling pathways critical for neuronal survival and growth. One member, TrkB, is particularly interesting because it plays a role in many severe degenerative neurological diseases. The TrkB natural ligand brain-derived neurotrophic factor (BDNF) is not suitable to be developed as a drug or therapy as proved by previous unsuccessful clinical trials. Here we report a selection method that produced potent full agonist antibodies that mimic BDNF function, yet with better biophysical properties. This study paves the road for the development of agonist antibodies for other receptor tyrosine kinases.
In the originally published version of this article, there was a typo in Figure 4D. The amino acid substitutions were referred to as Q226/G228 instead of L226/S228. This has since been corrected online. The corrected and original versions of Figure 4D are shown here. The authors apologize for any confusion this error may have caused.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.