There is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch’s membrane (BrMb)/choriocapillaris (CC) complex that is lost in AMD. Which component in the photoreceptor/RPE/BrMb/CC complex is affected first appears to depend on the type of AMD. In atrophic AMD (~85–90% of cases), it appears that large confluent drusen formation and hyperpigmentation (presumably dysfunction in RPE) are the initial insult and the resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of geographic atrophy (GA). The death and dysfunction of photoreceptors and CC appear to be secondary events to loss in RPE. In neovascular AMD (~10–15% of cases), the loss of choroidal vasculature may be the initial insult to the complex. Loss of CC with an intact RPE monolayer in wet AMD has been observed. This may be due to reduction in blood supply because of large vessel stenosis. Furthermore, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of complement components as well as proinflammatory molecules like CRP during AMD. In this toxic milieu, CC die or become dysfunction making adjacent RPE hypoxic. These hypoxic cells then produce angiogenic substances like VEGF that stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). The loss of CC might also be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation. Therefore, the mutualistic symbiotic relationship within the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.
Purpose The purpose of this study was to examine the relationships between choriocapillaris (CC) and retinal pigment epithelial (RPE) changes in age-related macular degeneration (AMD). Morphological changes in the RPE/choriocapillaris complex were quantified in dry and wet forms of AMD and the results compared to with aged control eyes without maculopathy. Methods Postmortem choroids from 3 aged control subjects, 5 geographic atrophy (GA) subjects and 3 wet AMD subjects were analyzed using a semi-quantitative computer-assisted morphometric technique developed to measure percent RPE and CC areas in choroidal whole mounts incubated for alkaline phosphatase activity. The tissues were subsequently embedded in methacrylate and sectioned to examine structural changes. Results There was a linear relationship between the loss of RPE and CC in GA. A 50% reduction in vascular area was found in regions of complete RPE atrophy. Extreme constriction of remaining viable capillaries was found in areas devoid of RPE. Adjacent to active choroidal neovascularization (CNV) in wet AMD, CC dropout was evident in the absence of RPE atrophy resulting in a 50% decrease in vascular area. Lumenal diameters of the remaining capillaries in wet AMD eyes were similar to controls. Conclusions The primary insult in GA appears to be at the level of the RPE and there is an intimate relationship between RPE atrophy and secondary CC degeneration. CC degeneration occurs in the presence of viable RPE in wet AMD. The RPE in regions of vascular dropout are presumably hypoxic, which may result in an increase in VEGF production by the RPE and stimulation of CNV.
Oxygen free radicals have been demonstrated to be important mediators of postischemic reperfusion injury in a broad variety of tissues; however, the cellular source of free radical generation is still unknown. In this study, electron paramagnetic resonance measurements with the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) demonstrate that bovine endothelial cells subjected to anoxia and reoxygenation become potent generators of superoxide and hydroxyl free radicals. A prominent DMPO-OH signal aN = aH = 14.9 G is observed on reoxygenation after 45 min of anoxic incubation. Quantitatiye measurements of this free radical generation and the time course of radical generation are performed. Both superoxide dismutase and catalase totally abolish this radical signal, suggesting that O2 is sequentially reduced from 0 -to H202 to OHS. Addition of ethanol resulted in trapping of the ethQxy radical, further confirming the generation of OH-. Endothelial radical generation was shown to cause cell death, as evidenced by trypan blue uptake. Radical generation was partially inhibited and partially scavenged by the xanthine oxidase inhibitor allopurinol. Marked inhibition of radical generation was observed with the potent xanthine oxidase inhibitor oxypurinol. These studies 'demonstrate that endothelial cells subjected to anoxia and reoxygenation, conditions observed in ischemic and reperfused tissues, generate a burst of superoxide-derived hydroxyl free radicals that in turn cause cell injury and cell death. Most of this free radical generation appears to be from the enzyme xanthine oxidase. Thus, endothelial cell free radical generation may be a central mechanism of cellular injury in postischemic tissues.Over the past decade, increasing evidence has accumulated suggesting that reactive oxygen free radicals are generated in cells and tissues and are important mediators of a variety of important pathologic processes. Oxygen free radicals have been proposed to mediate postischemic reperfusion damage in a variety of tissues, including the heart, lung, kidney, gastrointestinal tract, and brain (1). In all of these tissues, it has been shown that intravascular administration of free radical scavenging enzymes or drugs can prevent reperfusion injury and enhance postischemic functional recovery. Thus, these studies have provided indirect evidence for free radical generation in a wide variety of organs. Free radical generation in postischemic tissues has been measured with electron paramagnetic resonance (EPR) techniques (2). Both direct and spin-trapping EPR techniques have demonstrated that there is a burst of oxygen free radical generation after postischemic reperfusion of the heart (2-7).While there is a compelling body of literature suggesting that oxygen free radicals are generated in postischemic tissues, the mechanism of this free radical generation is still poorly understood. It MATERIALS AND METHODSFetal bovine aortic endothelial cells were isolated essentially as described (8) except that 0.1% (wt/vol) tryps...
The purpose of this study was to examine the localization and relative levels of vascular endothelial growth factor (VEGF; an angiogenic factor) and pigment epithelium-derived factor (PEDF; an antiangiogenic factor) in aged human choroid and to determine if the localization or their relative levels changed in age-related macular degeneration (AMD). Ocular tissues were obtained from eight aged control donors (age range, 75-86 years; mean age, 79.8 years) with no evidence or history of chorioretinal disease and from 12 donors diagnosed with AMD (age range, 61-105 years; mean age, 83.9 years). Tissues were cryopreserved and streptavidin alkaline phosphatase immunohistochemistry was performed with rabbit polyclonal anti-human VEGF and rabbit polyclonal anti-human PEDF antibodies. Binding of the antibodies was blocked by preincubation of the antibody with an excess of recombinant human PEDF or VEGF peptide. Choroidal blood vessels were identified with mouse anti-human CD-34 antibody in adjacent tissue sections. Three independent observers graded the immunohistochemical reaction product. The most prominent sites of VEGF and PEDF localization in aged control choroid were RPE-Bruch's membrane-choriocapillaris complex including RPE basal lamina, intercapillary septa, and choroidal stroma. There was no significant difference in immunostaining intensity and localization of VEGF and PEDF in aged control choroids. The most intense VEGF immunoreactivity was observed in leukocytes within blood vessels. AMD choroid had a similar pattern and intensity of VEGF immunostaining to that observed in aged controls. However, PEDF immunoreactivity was significantly lower in RPE cells (p=0.0073), RPE basal lamina (p=0.0141), Bruch's membrane (p<0.0001), and choroidal stroma (p=0.0161) of AMD choroids. The most intense PEDF immunoreactivity was observed in disciform scars. Drusen and basal laminar deposits (BLDs) were positive for VEGF and PEDF. In aged control subjects, VEGF and PEDF immunostaining was the most intense in RPE-Bruch's membrane-choriocapillaris complex. In AMD, PEDF was significantly lower in RPE cells, RPE basal lamina, Bruch's membrane and choroidal stroma. These data suggest that a critical balance exists between PEDF and VEGF, and PEDF may counteract the angiogenic potential of VEGF. The decrease in PEDF may disrupt the balance and be permissive for the formation of choroidal neovascularization (CNV) in AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.