Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.
We have fractionated porcine heparin species of low molecular weight, with an average specific anticoagulant activity of 96 units/mg by affinity chromotography. Highly active and relatively inactive preparations of similar size were obtained with specific anticoagulant activities of 360 and 4 units/mg, respectively. The highly active heparin fraction possesses 1.1 additional residues of glucuronic acid and 1.5 fewer residues of N-sulfated glucosamine per molecule compared to the relatively inactive species. This decrease in N-sulfated glucosamine appears to be secondary to a corresponding increase in N-acetylated glucosamine. This form also contains a tetrasaccharide sequence with a N-sulfated glucosamine at its reducing end as well as equivalent amounts of glucuronic acid and iduronic acid. Furthermore, the internal glucosamine residue of this sequence appears to be N-acetylated. Sufficient amounts of this tetrasaccharide sequence are present within the highly active preparation such that each molecule may be endowed with this structure. The relatively inactive product contains a significantly decreased quantity of this tetrasaccharide sequence such that only £-20% of these molecules may possess this structure. The mean distance between nonsulfated uronic acid residues of the highly active species is smaller than that separating similar residues of the relatively inactive product. In addition, a larger number of the nonsulfated uronic acid residues of the highly active material appears either to be present in a restricted region of the molecule separated only by glucosamine residues or to be located at penultimate positions within the polysaccharide chain.Heparin functions as an anticoagulant by binding to antithrombin and accelerating the rate at which this protein inactivates the serine proteases of the hemostatic mechanism (1). During the last 60 years, a number of investigators have attempted to define the chemical and physical features of heparin that are responsible for its anticoagulant action. However, the precise relationship between the structure of the mucopolysaccharide and its biologic properties has remained elusive. A communication from our laboratory provided evidence that only a small fraction (25-35%) of a given heparin preparation binds tightly to antithrombin and is responsible for 85-95% of the anticoagulant activity (2). This finding engendered the hope that, once the active fraction was carefully examined, a unique structure-function relationship for heparin would emerge. The existence of active and relatively inactive heparin species has been confirmed by Lindahl and his coworkers (3). Unfortunately, these investigators were unable to find any chemical parameters that distinguished between their two heparin fractions (3). MATERIALS AND METHODSHuman antithrombin and human thrombin were both isolated by methods previously reported from our laboratory (4). Two porcine heparin products were utilized as starting material forThe costs of publication of this article were defrayed in pa...
This laboratory has previously shown that an intratracheally instilled solution of hyaluronic acid (HA) protects the lung from elastase-induced airspace enlargement. In those studies, fluorescein-labeled HA was found to bind preferentially to lung elastic fibers, suggesting a mechanism for the protective effect. The current investigation extends these findings by examining the capacity of an aerosol preparation of HA to similarly inhibit elastase-induced lung injury. Syrian hamsters were exposed to aerosolized bovine tracheal HA (0.1% solution in water) for either 25 or 50 min, then immediately instilled intratracheally with 80 units of human neutrophil elastase. One week later the lungs were examined for airspace enlargement, using the mean linear intercept method. Animals exposed to HA for 50 min showed a significant decrease in airspace enlargement compared to controls exposed to aerosolized water alone (68.2 microm vs 85.9 microm; P < 0.05). The 25-min exposure to the HA aerosol also reduced the mean linear intercept compared to controls (73.7 microm vs 85.9 microm), but this decrease was not statistically significant. With regard to possible inflammatory effects of HA, there was no difference in the percentage of lavaged neutrophils between HA-treated and control lungs at 24 hr (1.4% vs 1.8%, respectively). As with earlier experiments using intratracheally instilled HA, aerosolized fluorescein-labeled HA was found to bind to lung elastic fibers. These results suggest that aerosolized HA may prevent elastase-mediated injury in pulmonary emphysema.
Previously, this laboratory has shown that intratracheally administered hyaluronic acid (HA) significantly reduces air-space enlargement in a hamster model of emphysema induced with pancreatic elastase. Whereas HA was given immediately following elastase in those initial studies, the current investigation determined the effect of instilling HA up to 2 h before or after intratracheal administration of elastase to hamsters. Both 1 and 2 mg HA, given 2 h before pancreatic elastase, significantly decreased (p < .05) air-space enlargement compared to controls (as measured by the mean linear intercept). Instillment of 2 mg HA, 1 h after pancreatic elastase, had a similar effect (p < .05). In contrast, 1 mg HA, given 1 or 2 h after pancreatic elastase, did not significantly affect the mean linear intercept. Against human neutrophil elastase, HA exhibited the same protective effect. While neutrophil elastase induced less air-space enlargement than pancreatic elastase, both 1 and 4 mg of HA, given 2 h prior to the enzyme, still produced a significant reduction (p < .05) in the mean linear intercept. HA exerted this effect despite the fact that it initiates a transient influx of neutrophils into the lung. Since HA does not slow the clearance of intratracheally instilled [14C] albumin from the lung, its mechanism of action may not involve physical interference with the movement of elastase through the lung, but may instead depend on interaction with elastic fibers. Evidence for an association between these two matrix constituents was provided by studies using fluorescein-labeled HA. Overall, these results further suggest that HA may be useful in preventing lung injury by elastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.