Agricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter “crop heterogeneity”) can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.
Temporal variation in the composition of species assemblages could be the result of deterministic processes driven by environmental change and/or stochastic processes of colonization and local extinction. Here, we analyzed the relative roles of deterministic and stochastic processes on bird assemblages in an agricultural landscape of southwestern France. We first assessed the impact of land cover change that occurred between 1982 and 2007 on (i) the species composition (presence/absence) of bird assemblages and (ii) the spatial pattern of taxonomic beta diversity. We also compared the observed temporal change of bird assemblages with a null model accounting for the effect of stochastic dynamics on temporal beta diversity. Temporal assemblage dissimilarity was partitioned into two separate components, accounting for the replacement of species (i.e. turnover) and for the nested species losses (or gains) from one time to the other (i.e. nestedness-resultant dissimilarity), respectively. Neither the turnover nor the nestedness-resultant components of temporal variation were accurately explained by any of the measured variables accounting for land cover change (r2<0.06 in all cases). Additionally, the amount of spatial assemblage heterogeneity in the region did not significantly change between 1982 and 2007, and site-specific observed temporal dissimilarities were larger than null expectations in only 1% of sites for temporal turnover and 13% of sites for nestedness-resultant dissimilarity. Taken together, our results suggest that land cover change in this agricultural landscape had little impact on temporal beta diversity of bird assemblages. Although other unmeasured deterministic process could be driving the observed patterns, it is also possible that the observed changes in presence/absence species composition of local bird assemblages might be the consequence of stochastic processes in which species populations appeared and disappeared from specific localities in a random-like way. Our results might be case-specific, but if stochastic dynamics are generally dominant, the ability of correlative and mechanistic models to predict land cover change effects on species composition would be compromised.
Quantifying the impact of land-use changes on biodiversity is a major challenge in conservation ecology. Static spatial relationships between bird communities and agricultural landscapes have been extensively studied. Yet, their ability to mirror the effects of temporal land-use dynamics remains to be demonstrated. Here, we test whether such space-for-time substitution approaches are relevant for explaining temporal variations in farmland bird communities. We surveyed 256 bird communities in an agricultural landscape in southwest France at the same locations in 1982 and 2007, and quantified the same seven landscape descriptors for each period. We compared the effects of spatial and temporal landscape changes over this 25-year period on bird species distributions and three community-level metrics: species richness and two community indices reflecting birds' specialisation regarding local vegetation structure (local CSI) and landscape composition (landscape CSI). Landscape heterogeneity decreased between 1982 and 2007 and crop area increased sharply at the expense of grassland as a result of agricultural intensification. We found that the correlations between temporal changes in bird distributions or community metrics and landscape components were less consistent than their spatial relationships in each year. This result advocates caution when using a space-for-time substitution approach to assess the effects of landscape changes on biodiversity. Additionally, community metrics showed contrasted responses to landscape changes. Species richness and local CSI for each period were negatively related to the area of crops and positively related to landscape heterogeneity. Conversely, the landscape CSI was positively related to the area of crop and negatively to landscape heterogeneity. To understand the ecological processes linked to changes in farm landscapes, our study underlines the need to develop long-term studies with bird and habitat data collected during several periods, and particularly to consider multiple community indices in monitoring change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.