The quality of photocure-based 3D printing greatly depends on the properties of the photoresin. There are still many challenges to be overcome at the material level before such additive manufacturing methods dominate the manufacturing industry. To contribute to this exciting research, an acrylate-epoxy hybrid and a vitrimeric photoresin were studied to reveal the formulation parameters that could be leveraged to obtain improved processability, mechanical performance, and repairability/reprocessability. As the network becomes more lightly or densely crosslinked, as a result of changing monomer compositions, or as its components are compatibilized, to different extents, by varying the types and loadings of the coupling agents, its thermomechanical, tensile, and vitrimeric behaviors are impacted. Using a particular formulation with a high concentration of dynamic β-hydroxyester linkages, samples are 3D printed and tested for repair and recyclability. When processed at sufficiently high temperatures, transesterification reactions are triggered, allowing for the full recovery of the tensile properties of the repaired or recycled materials, despite their inherently crosslinked structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.