This paper presents and discusses the results of an experimental program that has been made on an air test rig of a radial flow pump. The tested impeller is the so-called SHF impeller. Many experimental data have already been produced (tests in air and in water) on that geometry and these results are still used as databases for the validation of CFD codes. For the present study, an air test rig has been chosen for optical access facilities and measurements were realized with a vaneless diffuser. The 2D Particle Image Velocimetry technique has been used and measurements of flow velocities have been made simultaneously in the outer part of the impeller and in the vaneless diffuser. Measurements have been realized in five planes, in the hub to shroud direction, for various relative flow rates (design and off-design operating conditions). First, the paper focus on the evolutions of the phase averaged velocity charts in the impeller and the diffuser. Limitations of the phase averaging technique clearly appear in the very low partial flow rates and this will be related to previous pressure measurements analysis establishing the occurrence of rotating stall within the impeller for such operating conditions. The paper also proposes an analysis of the rates of fluctuations of the velocity charts and the evolutions in the various measuring planes as the relative flow rate becomes lower.
The startup of rocket engine turbopumps is generally performed only in a few seconds. It implies that these pumps reach their nominal operating conditions after only a few rotations. During these first rotations of the blades, the flow evolution in the pump is governed by transient phenomena, based mainly on the flow rate and rotation speed evolution. These phenomena progressively become negligible when the steady behavior is reached. The pump transient behavior induces significant pressure fluctuations, which may result in partial flow vaporization, i.e., cavitation. An existing experimental test rig has been updated in the LML Laboratory (Lille, France) for the startups of a centrifugal pump. The study focuses on the cavitation induced during the pump startup. Instantaneous measurement of torque, flow rate, inlet and outlet unsteady pressures, and pump rotation velocity enable to characterize the pump behavior during rapid starting periods. Three different types of fast startup behaviors have been identified. According to the final operating point, the startup is characterized either by a single drop of the delivery static pressure, by several low-frequency drops, or by a water hammer phenomenon that can be observed in both the inlet and outlet of the pump. A physical analysis is proposed to explain these three different types of transient flow behavior.
A theoretical analysis of the fast transients of turbomachineries, based on the study of unsteady and incompressible fluids mechanics equations applied to an impeller, is proposed. It leads to internal torque, internal power, and impeller head of an impeller during transient periods. The equations show that the behavior of a pump impeller is not only depending on the acceleration rate and flow rate, as it is usually admitted, but also on velocity profiles and their evolution during the transient. Some hypotheses on the flow in a radial flow pump are proposed. They are validated by comparison with the experimental results of a single stage, single volute radial flow pump during some fast acceleration periods. The model is also used to analyze the behavior of the pump during a fast startup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.