Background Multimorbidity measures are useful for resource planning, patient selection and prioritization, and factor adjustment in clinical practice, research, and benchmarking. We aimed to compare the explanatory performance of the adjusted morbidity group (GMA) index in predicting relevant healthcare outcomes with that of other quantitative measures of multimorbidity. Methods The performance of multimorbidity measures was retrospectively assessed on anonymized records of the entire adult population of Catalonia (North-East Spain). Five quantitative measures of multimorbidity were added to a baseline model based on age, gender, and socioeconomic status: the Charlson index score, the count of chronic diseases according to three different proposals (i.e., the QOF, HCUP, and Karolinska institute), and the multimorbidity index score of the GMA tool. Outcomes included all-cause death, total and non-scheduled hospitalization, primary care and ER visits, medication use, admission to a skilled nursing facility for intermediate care, and high expenditure (time frame 2017). The analysis was performed on 10 subpopulations: all adults (i.e., aged > 17 years), people aged > 64 years, people aged > 64 years and institutionalized in a nursing home for long-term care, and people with specific diagnoses (e.g., ischemic heart disease, cirrhosis, dementia, diabetes mellitus, heart failure, chronic kidney disease, and chronic obstructive pulmonary disease). The explanatory performance was assessed using the area under the receiving operating curves (AUC-ROC) (main analysis) and three additional statistics (secondary analysis). Results The adult population included 6,224,316 individuals. The addition of any of the multimorbidity measures to the baseline model increased the explanatory performance for all outcomes and subpopulations. All measurements performed better in the general adult population. The GMA index had higher performance and consistency across subpopulations than the rest of multimorbidity measures. The Charlson index stood out on explaining mortality, whereas measures based on exhaustive definitions of chronic diagnostic (e.g., HCUP and GMA) performed better than those using predefined lists of diagnostics (e.g., QOF or the Karolinska proposal). Conclusions The addition of multimorbidity measures to models for explaining healthcare outcomes increase the performance. The GMA index has high performance in explaining relevant healthcare outcomes and may be useful for clinical practice, resource planning, and public health research.
Background Non-attendance to scheduled hospital outpatient appointments may compromise healthcare resource planning, which ultimately reduces the quality of healthcare provision by delaying assessments and increasing waiting lists. We developed a model for predicting non-attendance and assessed the effectiveness of an intervention for reducing non-attendance based on the model. Methods The study was conducted in three stages: (1) model development, (2) prospective validation of the model with new data, and (3) a clinical assessment with a pilot study that included the model as a stratification tool to select the patients in the intervention. Candidate models were built using retrospective data from appointments scheduled between January 1, 2015, and November 30, 2018, in the dermatology and pneumology outpatient services of the Hospital Municipal de Badalona (Spain). The predictive capacity of the selected model was then validated prospectively with appointments scheduled between January 7 and February 8, 2019. The effectiveness of selective phone call reminders to patients at high risk of non-attendance according to the model was assessed on all consecutive patients with at least one appointment scheduled between February 25 and April 19, 2019. We finally conducted a pilot study in which all patients identified by the model as high risk of non-attendance were randomly assigned to either a control (no intervention) or intervention group, the last receiving phone call reminders one week before the appointment. Results Decision trees were selected for model development. Models were trained and selected using 33,329 appointments in the dermatology service and 21,050 in the pneumology service. Specificity, sensitivity, and accuracy for the prediction of non-attendance were 79.90%, 67.09%, and 73.49% for dermatology, and 71.38%, 57.84%, and 64.61% for pneumology outpatient services. The prospective validation showed a specificity of 78.34% (95%CI 71.07, 84.51) and balanced accuracy of 70.45% for dermatology; and 69.83% (95%CI 60.61, 78.00) for pneumology, respectively. The effectiveness of the intervention was assessed on 1,311 individuals identified as high risk of non-attendance according to the selected model. Overall, the intervention resulted in a significant reduction in the non-attendance rate to both the dermatology and pneumology services, with a decrease of 50.61% (p<0.001) and 39.33% (p=0.048), respectively. Conclusions The risk of non-attendance can be adequately estimated using patient information stored in medical records. The patient stratification according to the non-attendance risk allows prioritizing interventions, such as phone call reminders, to effectively reduce non-attendance rates.
The shortage of recently approved vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for evidence-based tools to prioritize healthcare resources for people at higher risk of severe coronavirus disease (COVID-19). Although age has been identified as the most important risk factor (particularly for mortality), the contribution of underlying comorbidities is often assessed using a pre-defined list of chronic conditions. Furthermore, the count of individual risk factors has limited applicability to population-based “stratify-and-shield” strategies. We aimed to develop and validate a COVID-19 risk stratification system that allows allocating individuals of the general population into four mutually-exclusive risk categories based on multivariate models for severe COVID-19, a composite of hospital admission, transfer to intensive care unit (ICU), and mortality among the general population. The model was developed using clinical, hospital, and epidemiological data from all individuals among the entire population of Catalonia (North-East Spain; 7.5 million people) who experienced a COVID-19 event (i.e., hospitalization, ICU admission, or death due to COVID-19) between March 1 and September 15, 2020, and validated using an independent dataset of 218,329 individuals with COVID-19 confirmed by reverse transcription—polymerase chain reaction (RT-PCR), who were infected after developing the model. No exclusion criteria were defined. The final model included age, sex, a summary measure of the comorbidity burden, the socioeconomic status, and the presence of specific diagnoses potentially associated with severe COVID-19. The validation showed high discrimination capacity, with an area under the curve of the receiving operating characteristics of 0.85 (95% CI 0.85–0.85) for hospital admissions, 0.86 (0.86–0.97) for ICU transfers, and 0.96 (0.96–0.96) for deaths. Our results provide clinicians and policymakers with an evidence-based tool for prioritizing COVID-19 healthcare resources in other population groups aside from those with higher exposure to SARS-CoV-2 and frontline workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.