Src family kinases (SFKs) are nonreceptor tyrosine kinases that are reported to be critical for cancer progression. We report here a novel subseries of C-5-substituted anilinoquinazolines that display high affinity and specificity for the tyrosine kinase domain of the c-Src and Abl enzymes. These compounds exhibit high selectivity for SFKs over a panel of recombinant protein kinases, excellent pharmacokinetics, and in vivo activity following oral dosing. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine (AZD0530) inhibits c-Src and Abl enzymes at low nanomolar concentrations and is highly selective over a range of kinases. AZD0530 displays excellent pharmacokinetic parameters in animal preclinically and in man (t(1/2) = 40 h). AZD0530 is a potent inhibitor of tumor growth in a c-Src-transfected 3T3-fibroblast xenograft model in vivo and led to a significant increase in survival in a highly aggressive, orthotopic model of human pancreatic cancer when dosed orally once daily. AZD0530 is currently undergoing clinical evaluation in man.
Deregulated activity of the nonreceptor tyrosine kinase c-Src is believed to result in signal transduction, cytoskeletal and adhesion changes, ultimately promoting a tumor-invasive phenotype. We report here the discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of the c-Src enzyme. Special attention was directed toward finding inhibitors selective against KDR tyrosine kinase in order to ensure that the in vivo profile of a specific Src inhibitor could be determined. The 4-aminobenzodioxole quinazoline series gave compounds with excellent potency and selectivity. The most interesting compounds were evaluated in vivo and displayed good pharmacokinetics following oral dosing. Compounds such as the aminobenzodioxoles were shown to be potent inhibitors of tumor growth in a c-Src-transformed 3T3 xenograft model in vivo, resulting in more than 90% growth inhibition at doses as low as 6 mg/kg po once daily. Src tyrosine kinase inhibitors such as these may provide a novel therapeutic modality for targeting cancer invasion and metastasis.
This paper describes the synthesis of a series of N-[2-(1-pyrrolidinyl)ethyl]acetamides 1, variously substituted at the carbon adjacent to the amide nitrogen (C1), and related analogues, together with their biological evaluation as opioid kappa agonists. In the first part of the study, the variants in N-acyl, N-alkyl, and amino functions were explored when the substituent at C1 was 1-methylethyl and the optimum was found to be exemplified by 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-(1-methylethyl)-2- (1-pyrrolidinyl)ethyl]acetamide (13). Subsequently, racemic or chiral amino acids were used to introduce other alkyl and aryl substituents at C1 of the ethyl linking moiety. A series of potent compounds, bearing substituted-aryl groups at C1, were discovered, typified by 2-(3,4-dichloro-phenyl)-N-methyl-N-[(1R,S)-1-(3-aminophenyl)-2-(1- pyrrolidinyl)ethyl]acetamide (48), which was 5-fold more active as the racemate than 13 in vitro and exhibited potent naloxone-reversible analgesic effects (ED50 = 0.04 mg/kg sc) in a mouse abdominal constriction model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.