Arterial stiffening is the most important cause of increasing systolic and pulse pressure, and for decreasing diastolic pressure beyond 40 years of age. Stiffening affects predominantly the aorta and proximal elastic arteries, and to a lesser degree the peripheral muscular arteries. While conceptually a Windkessel model is the simplest way to visualize the cushioning function of arteries, this is not useful clinically under changing conditions when effects of wave reflection become prominent. Many measures have been applied to quantify stiffness, but all are approximations only, on account of the nonhomogeneous structure of the arterial wall, its variability in different locations, at different levels of distending pressure, and with changes in smooth muscle tone. This article summarizes the methods and indices used to estimate arterial stiffness, and provides values from a survey of the literature, followed by recommendations of an international group of workers in the field who attended the First Consensus Conference on Arterial Stiffness, which was held in Paris during 2000, under the chairmanship of M.E. Safar and E.D. Frohlich.
Abstract-The vascular hallmark of subjects with end-stage renal disease undergoing hemodialysis is increased aortic stiffness, a phenomenon independent of mean arterial blood pressure, wall stress, and standard cardiovascular risk factors such as plasma glucose, cholesterol, obesity, and smoking. These observations suggest that subtle links might associate arterial stiffness and kidney function in normotensive and hypertensive populations. Recently, aortic pulse wave velocity and creatinine clearance have been shown to be statistically associated in subjects with plasma creatinine Յ130 mol/L, again independently of mean arterial blood pressure and classical cardiovascular risk factors. This association was even shown to predominate in subjects younger than age 55 years. In addition, acceleration of aortic pulse wave velocity with age was more important in these subjects than in untreated normotensive control individuals, and the phenomenon was consistently predicted by baseline plasma creatinine values. Among all antihypertensive drugs, angiotensin-converting enzyme inhibitors only were shown to exhibit a significant and independent effect on aortic stiffness. The use of these drugs was significantly associated with improvement of large aortic stiffness in subjects treated for hypertension. In conclusion, increased stiffness of central arteries is independently associated with reduced creatinine clearance in subjects with mild to severe renal insufficiency, indicating that kidney diseases may interact not only with small but also with large conduit arteries, independently of age, blood pressure level, and classical cardiovascular risk factors. Whether sodium, divalent ionic species (calcium, phosphates), and the renin-angiotensinaldosterone system play a role in such alterations remains to be elucidated. right's disease involves relatively well established links between uremia, high blood pressure, and cardiovascular (CV) complications, which were elegantly described from clinical observations at the end of the 19th century. In those days, biological and imaging tolls were of course quite limited, and exquisite clinical skill was critical for establishing such relationships of unique pathophysiological importance. The tremendous development of renal replacement therapy to handle chronic uremia, including dialysis techniques, over the past half century is associated with an increasing number of CV complications, which are poorly defined at this point in time, illustrating the complex relationships between renal failure and hypertension.Traditionally, one refers easily to three different mechanisms to explain these relationships. First, renal failure is associated with structural and/or functional alterations exclusively located in small resistance arteries. Second, hypertension-related CV complications affecting larger blood vessels of the brain and the heart are related to atherosclerosis, a morbid condition not necessarily immediately and exclusively linked to hypertension. Third, the kidney itself, also a majo...
Binder of sperm (BSP) proteins are ubiquitous among mammals and have been extensively investigated over the last three decades. They were first characterized in bull seminal plasma and have now been identified in more than 15 different mammalian species where they represent a superfamily. In addition to sharing a common structure, BSP proteins share many characteristics. They are expressed by seminal vesicles and epididymides, interact with similar ligands and bind to the outer leaflet of sperm membranes via an interaction with choline phospholipids. In addition to playing a major role in sperm capacitation, they are implicated as molecular chaperones in sperm motility and viability, in the formation of the oviductal sperm reservoir, in the regulation of cell volume and possibly in the interaction between sperm and oocytes, making them crucial multifunctional proteins. Furthermore, BSP proteins can bind to egg yolk low-density lipoproteins and milk components, an interaction important for the protection of sperm during semen preservation in liquid or frozen state. Our current knowledge of BSP proteins strongly emphasizes their fundamental importance in male fertility and in the optimization of semen preservation techniques. Much work is still ahead in order to fully understand all the mysteries of BSP proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.