Coral-reef ecosystems are experiencing frequent and severe disturbance events that are reducing global coral abundance and potentially overwhelming the natural capacity for reefs to recover. While mitigation strategies for climate warming and other anthropogenic disturbances are implemented, coral restoration programmes are being established worldwide as an additional conservation measure to minimise coral loss and enhance coral recovery. Current restoration efforts predominantly rely on asexually produced coral fragments—a process with inherent practical constraints on the genetic diversity conserved and the spatial scale achieved. Because the resilience of coral communities has hitherto relied on regular renewal with natural recruits, the scaling-up of restoration programmes would benefit from greater use of sexually produced corals, which is an approach that is gaining momentum. Here we review the present state of knowledge of scleractinian coral sexual reproduction in the context of reef restoration, with a focus on broadcast-spawning corals. We identify key knowledge gaps and bottlenecks that currently constrain the sexual production of corals and consider the feasibility of using sexually produced corals for scaling-up restoration to the reef- and reef-system scales.
Dredging, river plumes and natural resuspension events can release sediments into the water column where they exert a range of effects on underlying communities. In this review we examine possible cause-effect pathways whereby light reduction, elevated suspended sediments and sediment deposition could affect the reproductive cycle and early life histories of corals. The majority of reported or likely effects (30+) were negative, including a suite of previously unrecognized effects on gametes. The length of each phase of the life-cycle was also examined together with analysis of water quality conditions that can occur during a dredging project over equivalent durations, providing a range of environmentally relevant exposure scenarios for future testing. The review emphasizes the need to: (a) accurately quantify exposure conditions, (b) identify the mechanism of any effects in future studies, and (c) recognize the close interlinking of proximate factors which could confound interpretation of studies.
Successful recruitment in corals is important for the sustenance of coral reefs, and is considered a demographic bottleneck in the recovery of reef populations following disturbance events. Yet several factors influence larval settlement behaviour, and here we quantified thresholds associated with light attenuation and accumulated sediments on settlement substrates. Sediments deposited on calcareous red algae (CRA) directly and indirectly impacted coral settlement patterns. Although not avoiding direct contact, Acropora millepora larvae were very reluctant to settle on surfaces layered with sediments, progressively shifting their settlement preference from upward to downward facing (sediment-free) surfaces under increasing levels of deposited sediment. When only upward-facing surfaces were presented, 10% of settlement was inhibited at thresholds from 0.9 to 16mgcm (EC), regardless of sediment type (carbonate and siliciclastic) or particle size (fine and coarse silt). These levels equate to a very thin (<150μm) veneer of sediment that occurs within background levels on reefs. Grooves within settlement surfaces slightly improved options for settlement on sediment-coated surfaces (EC: 29mgcm), but were quickly infilled at higher deposited sediment levels. CRA that was temporarily smothered by sediment for 6d became bleached (53% surface area), and inhibited settlement at ~7mgcm (EC). A minor decrease in settlement was observed at high and very low light intensities when using suboptimal concentrations of a settlement inducer (CRA extract); however, no inhibition was observed when natural CRA surfaces along with more realistic diel-light patterns were applied. The low deposited sediment thresholds indicate that even a thin veneer of sediment can have consequences for larval settlement due to a reduction of optimal substrate. And while grooves and overhangs provide more settlement options in high deposition areas, recruits settling at these locations may be subject to ongoing stress from shading, competition, and sediment infilling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.