Human fibroblast cell cultures were employed as a model system to rapidly examine several potentially important variables involved in the use of high-voltage, pulsed galvanic stimulation (HVPGS) to increase the healing rate of soft tissue injuries. Fibroblasts were grown on Millipore filters and exposed to HVPGS of various voltages and pulse rates for 20 min in a rectangular, plastic chamber filled with growth medium. Filters with attached cells were placed either in the center of the chamber or close to the positive or negative electrode. Protein synthesis and DNA synthesis were monitored after stimulation using the radioactively labeled precursors, [3H]proline and [3H]thymidine, respectively. The major results obtained in this study are as follows: 1) the rates of both protein and DNA synthesis can be significantly increased by specific combinations of HVPGS voltage and pulse rate; 2) maximum stimulation of protein and DNA synthesis was obtained at 50 and 75 V, respectively, with a pulse rate of 100 pulses/s and the cells located near the negative electrode; and 3) exposure to HVPGS intensities greater than 250 V (at all pulse rates and locations within the chamber) is inhibitory for both protein and DNA synthesis. In view of the results obtained in preliminary clinical studies on the use of HVPGS for the treatment of dermal ulcers, it appears that similar voltages, pulse rates, and relative electrode location may be required for maximum acceleration of human skin wound healing.
We used complementary biochemical and immunological techniques to establish that an endothelial cell transmembrane glycoprotein, GP116, is a CD44-like molecule and binds directly both to extracellular matrix components (e.g., hyaluronic acid) and to ankyrin. The specific characteristics of GP116 are as follows: (i) GP116 can be surface labeled with Na125I and contains a wheat germ agglutinin-binding site(s), indicating that it has an extraceHlular domain; (ii) GP116 displays immunological cross-reactivity with a panel of CD44 antibodies, shares some peptide similarity with CD44, and has a similar 52-kDa precursor molecule, indicating that it is a CD44-like molecule; (iii) GP116 displays specific hyaluronic acid-binding properties, indicating that it is a hyaluronic acid receptor; (iv) GP116 can be phosphorylated by endogenous protein kinase C activated by 12-O-tetradecanoylphorbol-13-acetate and by exogenously added protein kinase C; and (v) GP116 and a 20-kDa tryptic polypeptide fragment of GP116 from the intracellular domain are capable of binding the membrane-cytoskeleton linker molecule, ankyrin. Furthermore, phosphorylation of GP116 by protein kinase C significantly enhances GP116 binding to ankyrin. Together, these findings strongly suggest that phosphorylation of the transmembrane glycoprotein GP116 (a CD44-like molecule) by protein kinase C is required for effective GP116-ankyrin interaction during endothelial cell adhesion events.
The genome of the nondefective parvovirus minute virus of mice (MVM) is a linear DNA molecular weight 1.48 x 10(6), which is single stranded for approximately 94% of its length. In contrast to the genomes from defective parvoviruses MVM DNA does not contain a detectable inverted terminal redundancy. A combination of enzymatic and physical techniques has shown that the molecule contains a stable hairpin duplex of approximately 130 base pairs located at the 5' terminus of the genome. MVM DNA is efficiently utilized as a template-primer by a number of DNA polymerases, including reverse transcriptases. Polymerases lacking 5' to 3' exonuclease activity yield a duplex DNA product with a molecular weight 1.96 times that of the viral genome, in which the newly synthesized complementary strand is covalently attached to the template. This duplex contains an internal "nick" that can be sealed by DNA ligase to produce a self-complementary single-strand circle. The MVM DNA duplex is cleaved twice by EcoR-RI restriction endonuclease to yield three distinct fragments in molar amounts. These results suggest that the initiation of DNA synthesis in vitro occurs at a point within 100 bases of the 3' end of the genome, using the 3' terminus of viral DNA as a primer, and that the sequence of nucleotides in the genome is not permuted.
With three independent techniques (absorption spectrophotometry, measurement of the deoxyribonucleic acid [DNA] melting temperature, and equilibrium dialysis), no evidence has been found for the binding of nalidixic acid to purified DNA. Also, no evidence has been found to support the hypothesis that nalidixic acid is permanently modified to a new, active compound by the bacterial cell. By using an in vitro DNA replication system developed by Bonhoeffer and colleagues, soluble extracts from nalidixic acid-sensitive cells have been shown to confer nalidixic acid sensitivity on the DNA synthesis of lysates from nalidixic acid-resistant cells. The activity in the extracts is only present in sensitive cells and is nondialyzable and heat sensitive. Finally, two known nalidixic acid-resistant mutants of Escherichia coli, mapping at nal A and nal B, respectively, have been tested to determine whether either of them is a transport mutant. It has been shown that nal Br is a transport mutant whereas nal Ar is not.Nalidixic acid (NAL; 1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthyridine -3 -carboxylic acid) is a specific, rapid, and reversible inhibitor of bacterial deoxyribonucleic acid (DNA) replication (3, 9). At present the mechanism of action of NAL is totally unknown. Previous work by other investigators has ruled out several possibilities. For example, none of the many purified enzymes involved in DNA metabolism are inhibited by NAL in vitro. Those (13,16,18). Consequently, NAL must be blocking some aspect of the DNA polymerization reaction itself and not just synthesis of the DNA precursors. Based on the work described above, three possibilities remain for the way in which NAL inhibits DNA replication: (i) NAL binds directly to the DNA template; (ii) NAL binds to and inactivates one of the components of the DNA replication complex (possibly an unknown replication protein); or (iii) NAL is chemically modified by metabolizing bacteria to an active form, which then functions by either (i) or (ii). In this paper we present experiments which test all three of these possribilities.In addition, we have carried out experiments with the two known NAL-resistant mutants of E. coli, mapping at nal A and nal B (10)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.