The thickness of the subcutaneous fat in hams is one of the most important factors for the dry-curing process and largely determines its final quality. This parameter is usually measured in slaughterhouses by a manual metrical measure to classify hams. The aim of the present study was to propose an automatic classification method based on data obtained from a carcass automatic classification equipment (AutoFom) and intrinsic data of the pigs (sex, breed, and weight) to simulate the manual classification system. The evaluated classification algorithms were decision tree, support vector machines (SVM), k-nearest neighbour and discriminant analysis. A total of 4000 hams selected by breed and sex were classified as thin (0-10 mm), standard (11-15 mm), semi-fat (16-20 mm) and fat (>20 mm). The most reliable model, with a percentage of success of 73%, was SVM with Gaussian kernel, including all data available. These results suggest that the proposed classification method can be a useful online tool in slaughterhouses to classify hams.
The thickness of the subcutaneous fat (SFT) is a very important parameter in the ham, since determines the process the ham will be submitted. This study compares two methods to predict the SFT in slaughter line: an automatic system using an SVM model (Support Vector Machine) and a manual measurement of the fat carried out by an experienced operator, in terms of accuracy and economic benefit. These two methods were compared to the golden standard obtained by measuring SFT with a ruler in a sample of 400 hams equally distributed within each SFT class. The results show that the SFT prediction made by the SVM model achieves an accuracy of 75.3%, which represents an improvement of 5.5% compared to the manual measurement. Regarding economic benefits, SVM model can increase them between 12-17%. It can be concluded that the classification using SVM is more accurate than the one performed manually with an increase of the economic benefit for sorting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.