Hydrologic-landscape regions in the United States were delineated by using geographic information system (GIS) tools combined with principal components and cluster analyses. The GIS and statistical analyses were applied to land-surface form, geologic texture (permeability of the soil and bedrock), and climate variables that describe the physical and climatic setting of 43,931 small (approximately 200 km2) watersheds in the United States. (The term "watersheds" is defined in this paper as the drainage areas of tributary streams, headwater streams, and stream segments lying between two confluences.) The analyses grouped the watersheds into 20 noncontiguous regions based on similarities in land-surface form, geologic texture, and climate characteristics. The percentage of explained variance (R-squared value) in an analysis of variance was used to compare the hydrologic-landscape regions to 19 square geometric regions and the 21 U.S. Environmental Protection Agency level-II ecoregions. Hydrologic-landscape regions generally were better than ecoregions at delineating regions of distinct land-surface form and geologic texture. Hydrologic-landscape regions and ecoregions were equally effective at defining regions in terms of climate, land cover, and water-quality characteristics. For about half of the landscape, climate, and water-quality characteristics, the R-squared values of square geometric regions were as high as hydrologic-landscape regions or ecoregions.
Studies of the effects of urbanization on stream ecosystems have usually focused on single metropolitan areas. Synthesis of the results of such studies have been useful in developing general conceptual models of the effects of urbanization, but the strength of such generalizations is enhanced by applying consistent study designs and methods to multiple metropolitan areas across large geographic scales. We summarized the results from studies of the effects of urbanization on stream ecosystems in 9 metropolitan areas across the US
Abstract:Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States-higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Three investigations are underway, as part of the U.S. Geological Survey's National Water‐Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in‐stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.