In this paper, we propose a self-adaptive FPGAbased, partially reconfigurable system for space missions in order to mitigate Single Event Upsets in the FPGA configuration and fabric. Dynamic reconfiguration is used here for an on-demand replication of modules in dependence of current and changing radiation levels. More precisely, the idea is to trigger a redundancy scheme such as Dual Modular Redundancy or Triple Modular Redundancy in response to a continuously monitored Single Event Upset rate measured inside the on-chip memories itself, e.g., any subset (even used) internal Block RAMs. Depending on the current radiation level, the minimal number of replicas is determined at runtime under the constraint that a required Safety Integrity Level for a module is ensured and configured accordingly. For signal processing applications it is shown that this autonomous adaption to the different solar conditions realizes a resource efficient mitigation. In our case study, we show that it is possible to triplicate the data throughput at the Solar Maximum condition (no flares) compared to a Triple Modular Redundancy implementation of a single module. We also show the decreasing Probability of Failures Per Hour by 2 × 10 4 at flare-enhanced conditions compared with a non-redundant system.Our work is a part of the In-Orbit Verification of the Heinrich Hertz communication satellite.
In this paper, it will be shown that open-channel hydraulic systems can be suitably represented for control purposes by using input delay linear parameter-varying (LPV) models. The physical equations on which this work is done are Saint-Venant equations applied to a non-rectangular cross section channel. These later are two coupled non-linear hyperbolic partial differential equations which are linearized and transformed into irrational transfer functions. An accurate model approximation procedure, denoted IPTFA (Irrational Proper Transfer Function Algorithm) is developed in order to obtain a rational transfer function plus input delays which is then parameterized by one single parameter: the initial steadystate discharge. Frequency domain responses of the irrational and reduced-order transfer functions are shown to match for a large range of discharge.
Automatic water level control methods for open channels have difficulties to keep good performances for a large range of flow and significant unknown disturbances. A new concept called Model-Free Control is applied in this paper for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned for cascaded power plants. Numerous dynamic simulations show that with a simple and robust control algorithm, the set-point is followed even in severe operating conditions.
Reconfigurable architectures are increasingly employed in a large range of embedded applications, mainly due to their ability to provide high performance and high flexibility, combined with the possibility to be tuned according to the specific task they address. Reconfigurable systems are today used in several application areas, and are also suitable for systems employed in safety-critical environments. The actual development trend in this area is focused on the usage of the reconfigurable features to improve the fault tolerance and the self-test and the self-repair capabilities of the considered systems. The state-of-the-art of the reconfigurable systems is today represented by Very Long Instruction Word (VLIW) processors and reconfigurable systems based on partially reconfigurable SRAM-based FPGAs. In this paper, we present an overview and accurate analysis of these two type of reconfigurable systems. The content of the paper is focused on analyzing design features, f ail-safe and reconfigurable features oriented to self-adaptive mitigation and redundancy approaches applied during the design phase. Experimental results reporting a clear status of the test data and fault tolerance robustness are detailed and commented
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.