Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.
Accurate segmentation of infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is an indispensable foundation for early studying of brain growth patterns and morphological changes in neurodevelopmental disorders. Nevertheless, in the isointense phase (approximately 6-9 months of age), due to inherent myelination and maturation process, WM and GM exhibit similar levels of intensity in both T1-weighted (T1w) and T2-weighted (T2w) MR images, making tissue segmentation very challenging. Despite many efforts devoted to brain segmentation, only few studies have focused on the segmentation of 6-month infant brain images. With the idea of boosting methodological development in the community, iSeg-2017 challenge (http://iseg2017.web.unc.edu) provides a set of 6-month infant subjects with manual labels for training and testing the participating methods. Among the 21 automatic segmentation methods participating in iSeg-2017, we review the 8 top-ranked teams, in terms of Dice ratio, modified Hausdorff distance and average surface distance, and introduce their
Multi-atlas patch-based label fusion methods have been successfully used to improve segmentation accuracy in many important medical image analysis applications. In general, to achieve label fusion a single target image is first registered to several atlas images, after registration a label is assigned to each target point in the target image by determining the similarity between the underlying target image patch (centered at the target point) and the aligned image patch in each atlas image. To achieve the highest level of accuracy during the label fusion process it’s critical the chosen patch similarity measurement accurately captures the tissue/shape appearance of the anatomical structure. One major limitation of existing state-of-the-art label fusion methods is that they often apply a fixed size image patch throughout the entire label fusion procedure. Doing so may severely affect the fidelity of the patch similarity measurement, which in turn may not adequately capture complex tissue appearance patterns expressed by the anatomical structure. To address this limitation, we advance state-of-the-art by adding three new label fusion contributions: First, each image patch now characterized by a multi-scale feature representation that encodes both local and semi-local image information. Doing so will increase the accuracy of the patch-based similarity measurement. Second, to limit the possibility of the patch-based similarity measurement being wrongly guided by the presence of multiple anatomical structures in the same image patch, each atlas image patch is further partitioned into a set of label-specific partial image patches according to the existing labels. Since image information has now been semantically divided into different patterns, these new label-specific atlas patches make the label fusion process more specific and flexible. Lastly, in order to correct target points that are mislabeled during label fusion, a hierarchically approach is used to improve the label fusion results. In particular, a coarse-to-fine iterative label fusion approach is used that gradually reduces the patch size. To evaluate the accuracy of our label fusion approach, the proposed method was used to segment the hippocampus in the ADNI dataset and 7.0 tesla MR images, sub-cortical regions in LONI LBPA40 dataset, mid-brain regions in SATA dataset from MICCAI 2013 segmentation challenge, and a set of key internal gray matter structures in IXI dataset. In all experiments, the segmentation results of the proposed hierarchical label fusion method with multi-scale feature representations and label-specific atlas patches are more accurate than several well-known state-of-the-art label fusion methods.
Recently, multiple-atlas segmentation (MAS) has achieved a great success in the medical imaging area. The key assumption is that multiple atlases have greater chances of correctly labeling a target image than a single atlas. However, the problem of atlas selection still remains unexplored. Traditionally, image similarity is used to select a set of atlases. Unfortunately, this heuristic criterion is not necessarily related to the final segmentation performance. To solve this seemingly simple but critical problem, we propose a learning-based atlas selection method to pick up the best atlases that would lead to a more accurate segmentation. Our main idea is to learn the relationship between the pairwise appearance of observed instances (i.e., a pair of atlas and target images) and their final labeling performance (e.g., using the Dice ratio). In this way, we select the best atlases based on their expected labeling accuracy. Our atlas selection method is general enough to be integrated with any existing MAS method. We show the advantages of our atlas selection method in an extensive experimental evaluation in the ADNI, SATA, IXI, and LONI LPBA40 datasets. As shown in the experiments, our method can boost the performance of three widely used MAS methods, outperforming other learning-based and image-similarity-based atlas selection methods.
Background and ObjectivesMounting evidence implies that there are sex differences in white matter hyperintensity (WMH) burden in older people. Questions remain regarding possible differences in WMH burden between men and women of younger age, sex-specific age trajectories and effects of (un)controlled hypertension, and the effect of menopause on WMH. Therefore, our aim was to investigate these sex differences and age dependencies in WMH load across the adult life span and to examine the effect of menopause.MethodsThis cross-sectional analysis was based on participants of the population-based Rhineland Study (30–95 years) who underwent brain MRI. We automatically quantified WMH using T1-weighted, T2-weighted, and fluid-attenuated inversion recovery images. Menopausal status was self-reported. We examined associations of sex and menopause with WMH load (logit-transformed and z-standardized) using linear regression models while adjusting for age, age-squared, and vascular risk factors. We checked for an age × sex and (un)controlled hypertension × sex interaction and stratified for menopausal status comparing men with premenopausal women (persons aged 59 years or younger), men with postmenopausal women (persons aged 45 years or older), and premenopausal with postmenopausal women (age range 45–59 years).ResultsOf 3,410 participants with a mean age of 54.3 years (SD = 13.7), 1,973 (57.9%) were women, of which 1,167 (59.1%) were postmenopausal. We found that the increase in WMH load accelerates with age and in a sex-dependent way. Premenopausal women and men of similar age did not differ in WMH burden. WMH burden was higher and accelerated faster in postmenopausal women compared with men of similar age. In addition, we observed changes related to menopause, in that postmenopausal women had more WMH than premenopausal women of similar age. Women with uncontrolled hypertension had a higher WMH burden compared with men, which was unrelated to menopausal status.DiscussionAfter menopause, women displayed a higher burden of WMH than contemporary premenopausal women and men and an accelerated increase in WMH. Sex-specific effects of uncontrolled hypertension on WMH were not related to menopause. Further studies are warranted to investigate menopause-related physiologic changes that may inform on causal mechanisms involved in cerebral small vessel disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.