Classical arabinogalactan proteins (AGPs) are an abundant class of cell surface proteoglycans widely distributed in flowering plants. We have used a combination of enhancer detection tagging and RNA interference (RNAi)-induced posttrancriptional silencing to demonstrate that AGP18, a gene encoding a classical arabinogalactan protein, is essential for female gametogenesis in Arabidopsis thaliana. AGP18 is expressed in cells that spatially and temporally define the sporophytic to gametophytic transition and during early stages of seed development. More than 75% of the T1 transformants resulted in T2 lines showing reduced seed set during at least three consecutive generations but no additional developmental defects. AGP18-silenced T2 lines showed reduced AGP18 transcript levels in female reproductive organs, the presence of 21-bp RNA fragments specific to the AGP18 gene, and the absence of in situ AGP18 mRNA localization in developing ovules. Reciprocal crosses to wild-type plants indicate that the defect is female specific. The genetic and molecular analysis of AGP18-silenced plants containing a single T-DNA RNAi insertion suggests that posttranscriptional silencing of AGP18 is acting both at the sporophytic and gametophytic levels. A cytological analysis of all defective AGP18-RNAi lines, combined with the analysis of molecular markers acting at key stages of female gametogenesis, showed that the functional megaspore fails to enlarge and mitotically divide, indicating that AGP18 is essential to initiate female gametogenesis in Arabidopsis. Our results assign a specific function in plant development to a gene encoding a classical AGP.
Starches isolated from four ayocote bean varieties were modified by thermal treatment to determinate the effect of the treatment on the structural changes of ayocote bean starch. Scanning electron microscopy indicates that the starch granules have oval and round shapes, with heterogeneous sizes and fractures when the extraction method is used. The presence of new bands at 2850 and 1560 cm in the FT-IR spectra showed that the thermal treatment of ayocote beans induced an interaction between the protein or lipid and the amylose or amylopectin, while the sharpest band at 3400 cm indicated a dehydration process in the starch granule in addition to the presence of the band at 1260 cm, indicating the product of the retrogradation process. The thermal treatment reduced the crystallinity as well as short-range order. Raman spectroscopy revealed that acute changes occurred in the polysaccharide bonds after thermal treatment. This study showed that the thermal treatment affected the structural properties of ayocote bean starches, the interactions of the lipids and proteins with starch molecules and the retrogradation process of starch.
The Erythrina americana tree has been widely studied for its antioxidant and antimicrobial activity, principally of the seeds. Few studies have focused on the other tree parts. This work evaluated the effect of drying on the proximate chemical composition, IC50, and total phenolic content (TPC) of different parts of the plant from Erythrina americana. Proximate chemical composition showed significant differences between parts of the plant. Tree bark (TB) exhibited higher protein content, crude fiber, and ash. The IC50 value was significantly different in all parts of the plant; the leaves exhibited lower amounts necessary to reach this value. The drying process had a positive influence on the antioxidant activity in all parts of the plant, with mature flowers (MF) and young flowers (YF) samples. These were the samples that required the lowest concentration of all dry samples to reach the IC50 value. The TPC values showed significant differences between fresh and dry samples except for MF, according the ANOVA and Tukey test (P≤0.05). In conclusion, the drying process has potential for retaining the antioxidant activity in YD and MF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.