The phase transformation kinetics under continuous cooling conditions for intercritical austenite in a cold rolled low carbon steel were investigated over a wide range of cooling rates (0.1–200 ∘ C/s). The start and finish temperatures of the intercritical austenite transformation were determined by quenching dilatometry and a continuous cooling transformation (CCT) diagram was constructed. The resulting experimental CCT diagram was compared with that calculated via JMatPro software, and verified using electron microscopy and hardness tests. In general, the results reveal that the experimental CCT diagram can be helpful in the design of thermal cycles for the production of different grades of dual-phase–advanced high-strengh steels (DP-AHSS) in continuous processing lines. The results suggest that C enrichment of intercritical austenite as a result of heating in the two phases (ferrite–austenite) region and C partitioning during the formation of pro-eutectoid ferrite on cooling significantly alters the character of subsequent austenite phase transformations.
The main process variables to produce galvanized dual phase (DP) steel sheets in continuous galvanizing lines are time and temperature of intercritical austenitizing (tIA and TIA), cooling rate (CR1) after intercritical austenitizing, holding time at the galvanizing temperature (tG) and finally the cooling rate (CR2) to room temperature. In this research work, the effects of CR1, tG and CR2 on the ultimate tensile strength (UTS), yield strength (YS), and elongation (EL) of cold rolled low carbon steel were investigated by applying an experimental central composite design and a multivariate regression model. A multi-objective optimization and the Pareto Front were used for the optimization of the continuous galvanizing heat treatments. Typical thermal cycles applied for the production of continuous galvanized AHSS-DP strips were simulated in a quenching dilatometer using miniature tensile specimens. The experimental results of UTS, YS and EL were used to fit the multivariate regression model for the prediction of these mechanical properties from the processing parameters (CR1, tG and CR2). In general, the results show that the proposed multivariate model correctly predicts the mechanical properties of UTS, YS and %EL for DP steels processed under continuous galvanizing conditions. Furthermore, it is demonstrated that the phase transformations that take place during the optimized tG (galvanizing time) play a dominant role in determining the values of the mechanical properties of the DP steel. The production of hot-dip galvanized DP steels with a minimum tensile strength of 1100 MPa is possible by applying the proposed methodology. The results provide important scientific and technological knowledge about the annealing/galvanizing thermal cycle effects on the microstructure and mechanical properties of DP steels.
Interrupted and continuous hot compression tests were performed for eutectoid steel over the temperature range of 850 to 1050 °C and while using strain rates of 0.001, 0.01, 0.1, and 1 s−1. The interrupted tests were carried out to characterize the kinetics of static recrystallization(SRX) and determinate the interpass time conditions that are required for initiation and propagation of dynamic recrystallization (DRX), while considering that the material does not contain microalloying elements additions for the recrystallization delay. Continuous testing was used to investigate the evolution of the austenite grain size that results from DRX. The results indicate that carbon content accelerates the SRX rate. This effect was observed when the retardation of recrystallization due to a decrease in deformation temperature from 1050 to 850 °C was only about one order of magnitude. The expected decelerate effect on the SRX rate when the initial grain size increases from 86 to 387 µm was not significant for this material. Although the strain parameter has a strong influence on SRX rate, in contrast to a lesser degree of strain rate, both of the effects are nearly independent of the chemical composition. The calculated maximum interpass times that are compatible with DRCR (Dynamic Recrystallization Controlled Rolling), for relatively low strain rates, suggest that the onset and maintaining of the DRX is possible. However, while using the empirical equations that were developed in the present work to estimate the maximum times for high strain rates, such as those observed in the wire and rod mills, indicate that the DRX start is feasible, but maintaining this mechanism for 5% softening in each pass after peak strain is not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.