Induction motors are widely used worldwide for domestic and industrial applications. Fault detection and classification techniques based on signal analysis have increased in popularity due to the growing use of induction motors in new technologies such as electric vehicles, automatic control, maintenance systems, and the inclusion of renewable energy sources in electrical systems, among others. Hence, monitoring, fault detection, and classification are topics of interest for researchers, given that the presence of a fault can lead to catastrophic consequences concerning technical and financial aspects. To detect a fault in an induction motor, several techniques based on different physical variables, such as vibrations, current signals, stray flux, and thermographic images, have been studied. This paper reviews recent investigations into physical variables, instruments, and techniques used in the analysis of faults in induction motors, aiming to provide an overview on the pros and cons of using a certain type of physical variable for fault detection. A discussion about the detection accuracy and complexity of the signals analysis is presented, comparing the results reported in recent years. This work finds that current and vibration are the most popular signals employed to detect faults in induction motors. However, stray flux signal analysis is presented as a promising alternative to detect faults under certain operating conditions where other methods, such as current analysis, may fail.
Broken rotor bars in induction motors make up one of the typical fault types that are challenging to detect. This type of damage can provoke adverse effects on the motors, such as mechanical and electrical stresses, together with an increase in electricity consumption, causing higher operative costs and losses related to the maintenance times or even the motor replacement if the damage has led to a complete failure. To prevent such situations, diverse signal processing algorithms have been applied to incipient fault detection, using different variables to analyze, such as vibrations, current, or flux. To counteract the broken rotor bar damage, this paper focuses on a motor current signal analysis for early broken bar detection and classification by using the digital Taylor–Fourier transform (DTFT), whose implementation allows fine filtering and amplitude estimation with the final purpose of achieving an incipient fault detection. The detection is based on an analysis of variance followed by a Tukey test of the estimated amplitude. The proposed methodology is implemented in Matlab using the O-splines of the DTFT to reduce the computational load compared with other methods. The analysis is focused on groups of 50-test of current signals corresponding to different damage levels for a motor operating at 50% and 75% of its full load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.